Expectation of $X_T^4$ when $X_T$ is log-normally distributed

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
What is $mathbbEleft(X_T^4right)$?







share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
    What is $mathbbEleft(X_T^4right)$?







    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
      What is $mathbbEleft(X_T^4right)$?







      share|cite|improve this question














      Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
      What is $mathbbEleft(X_T^4right)$?









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 15 at 12:37









      Björn Friedrich

      2,47361731




      2,47361731










      asked May 22 at 16:15









      Yuteng

      377




      377




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          0
          down vote













          Hint



          I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.



          The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
          $$
          E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
          $$
          To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
          $$
          E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
          $$
          There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.






          share|cite|improve this answer



























            up vote
            0
            down vote













            Given:


            You are given that
            $$
            ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
            $$



            Simplifications:


            To begin with, let us define
            $$
            Y := ln(X_T) ;,
            qquad
            mu := ln(x) + dfracT-t2 ;,
            qquadtextandqquad
            sigma := T - t ;.
            $$
            Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
            $$
            mathbbE(Y) = colorgreenmu ;,
            qquad
            mathbbSD(Y) = colorbrownsigma ;,
            qquadtextandqquad
            mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
            $$
            To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.



            Identities:


            Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
            $$
            mathbbE(cY) = cmathbbE(Y)
            qquadtextandqquad
            mathbbSD(cY) = cmathbbSD(Y) ;,
            $$
            we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
            $$
            mathbbE(cY) = colorgreencmu ;,
            qquad
            mathbbSD(cY) = colorbrowncsigma ;,
            qquadtextandqquad
            mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
            $$



            Final result:


            Now we just need to set $c = 4$, to get the final result




            $$
            mathbbE(X_T^4)
            = mathrme^4mu + frac12(4sigma)^2
            = underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
            $$







            share|cite|improve this answer






















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2791718%2fexpectation-of-x-t4-when-x-t-is-log-normally-distributed%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              0
              down vote













              Hint



              I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.



              The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
              $$
              E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
              $$
              To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
              $$
              E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
              $$
              There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.






              share|cite|improve this answer
























                up vote
                0
                down vote













                Hint



                I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.



                The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
                $$
                E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
                $$
                To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
                $$
                E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
                $$
                There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.






                share|cite|improve this answer






















                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Hint



                  I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.



                  The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
                  $$
                  E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
                  $$
                  To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
                  $$
                  E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
                  $$
                  There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.






                  share|cite|improve this answer












                  Hint



                  I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.



                  The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
                  $$
                  E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
                  $$
                  To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
                  $$
                  E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
                  $$
                  There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 22 at 16:56









                  Mike Earnest

                  16.3k11648




                  16.3k11648




















                      up vote
                      0
                      down vote













                      Given:


                      You are given that
                      $$
                      ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
                      $$



                      Simplifications:


                      To begin with, let us define
                      $$
                      Y := ln(X_T) ;,
                      qquad
                      mu := ln(x) + dfracT-t2 ;,
                      qquadtextandqquad
                      sigma := T - t ;.
                      $$
                      Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
                      $$
                      mathbbE(Y) = colorgreenmu ;,
                      qquad
                      mathbbSD(Y) = colorbrownsigma ;,
                      qquadtextandqquad
                      mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
                      $$
                      To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.



                      Identities:


                      Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
                      $$
                      mathbbE(cY) = cmathbbE(Y)
                      qquadtextandqquad
                      mathbbSD(cY) = cmathbbSD(Y) ;,
                      $$
                      we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
                      $$
                      mathbbE(cY) = colorgreencmu ;,
                      qquad
                      mathbbSD(cY) = colorbrowncsigma ;,
                      qquadtextandqquad
                      mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
                      $$



                      Final result:


                      Now we just need to set $c = 4$, to get the final result




                      $$
                      mathbbE(X_T^4)
                      = mathrme^4mu + frac12(4sigma)^2
                      = underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
                      $$







                      share|cite|improve this answer


























                        up vote
                        0
                        down vote













                        Given:


                        You are given that
                        $$
                        ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
                        $$



                        Simplifications:


                        To begin with, let us define
                        $$
                        Y := ln(X_T) ;,
                        qquad
                        mu := ln(x) + dfracT-t2 ;,
                        qquadtextandqquad
                        sigma := T - t ;.
                        $$
                        Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
                        $$
                        mathbbE(Y) = colorgreenmu ;,
                        qquad
                        mathbbSD(Y) = colorbrownsigma ;,
                        qquadtextandqquad
                        mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
                        $$
                        To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.



                        Identities:


                        Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
                        $$
                        mathbbE(cY) = cmathbbE(Y)
                        qquadtextandqquad
                        mathbbSD(cY) = cmathbbSD(Y) ;,
                        $$
                        we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
                        $$
                        mathbbE(cY) = colorgreencmu ;,
                        qquad
                        mathbbSD(cY) = colorbrowncsigma ;,
                        qquadtextandqquad
                        mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
                        $$



                        Final result:


                        Now we just need to set $c = 4$, to get the final result




                        $$
                        mathbbE(X_T^4)
                        = mathrme^4mu + frac12(4sigma)^2
                        = underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
                        $$







                        share|cite|improve this answer
























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          Given:


                          You are given that
                          $$
                          ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
                          $$



                          Simplifications:


                          To begin with, let us define
                          $$
                          Y := ln(X_T) ;,
                          qquad
                          mu := ln(x) + dfracT-t2 ;,
                          qquadtextandqquad
                          sigma := T - t ;.
                          $$
                          Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
                          $$
                          mathbbE(Y) = colorgreenmu ;,
                          qquad
                          mathbbSD(Y) = colorbrownsigma ;,
                          qquadtextandqquad
                          mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
                          $$
                          To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.



                          Identities:


                          Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
                          $$
                          mathbbE(cY) = cmathbbE(Y)
                          qquadtextandqquad
                          mathbbSD(cY) = cmathbbSD(Y) ;,
                          $$
                          we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
                          $$
                          mathbbE(cY) = colorgreencmu ;,
                          qquad
                          mathbbSD(cY) = colorbrowncsigma ;,
                          qquadtextandqquad
                          mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
                          $$



                          Final result:


                          Now we just need to set $c = 4$, to get the final result




                          $$
                          mathbbE(X_T^4)
                          = mathrme^4mu + frac12(4sigma)^2
                          = underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
                          $$







                          share|cite|improve this answer














                          Given:


                          You are given that
                          $$
                          ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
                          $$



                          Simplifications:


                          To begin with, let us define
                          $$
                          Y := ln(X_T) ;,
                          qquad
                          mu := ln(x) + dfracT-t2 ;,
                          qquadtextandqquad
                          sigma := T - t ;.
                          $$
                          Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
                          $$
                          mathbbE(Y) = colorgreenmu ;,
                          qquad
                          mathbbSD(Y) = colorbrownsigma ;,
                          qquadtextandqquad
                          mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
                          $$
                          To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.



                          Identities:


                          Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
                          $$
                          mathbbE(cY) = cmathbbE(Y)
                          qquadtextandqquad
                          mathbbSD(cY) = cmathbbSD(Y) ;,
                          $$
                          we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
                          $$
                          mathbbE(cY) = colorgreencmu ;,
                          qquad
                          mathbbSD(cY) = colorbrowncsigma ;,
                          qquadtextandqquad
                          mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
                          $$



                          Final result:


                          Now we just need to set $c = 4$, to get the final result




                          $$
                          mathbbE(X_T^4)
                          = mathrme^4mu + frac12(4sigma)^2
                          = underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
                          $$








                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Aug 15 at 12:35

























                          answered Jul 4 at 8:45









                          Björn Friedrich

                          2,47361731




                          2,47361731






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2791718%2fexpectation-of-x-t4-when-x-t-is-log-normally-distributed%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              這個網誌中的熱門文章

                              How to combine Bézier curves to a surface?

                              Propositional logic and tautologies

                              Distribution of Stopped Wiener Process with Stochastic Volatility