Expectation of $X_T^4$ when $X_T$ is log-normally distributed
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
What is $mathbbEleft(X_T^4right)$?
brownian-motion
add a comment |Â
up vote
0
down vote
favorite
Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
What is $mathbbEleft(X_T^4right)$?
brownian-motion
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
What is $mathbbEleft(X_T^4right)$?
brownian-motion
Let $X_T$ be a random variable with $$ln(X_T) sim mathcalNleft(ln(x)+fracT-t2,T-tright).$$
What is $mathbbEleft(X_T^4right)$?
brownian-motion
edited Aug 15 at 12:37


Björn Friedrich
2,47361731
2,47361731
asked May 22 at 16:15
Yuteng
377
377
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
Hint
I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.
The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
$$
E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
$$
To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
$$
E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
$$
There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.
add a comment |Â
up vote
0
down vote
Given:
You are given that
$$
ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
$$
Simplifications:
To begin with, let us define
$$
Y := ln(X_T) ;,
qquad
mu := ln(x) + dfracT-t2 ;,
qquadtextandqquad
sigma := T - t ;.
$$
Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
$$
mathbbE(Y) = colorgreenmu ;,
qquad
mathbbSD(Y) = colorbrownsigma ;,
qquadtextandqquad
mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
$$
To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.
Identities:
Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
$$
mathbbE(cY) = cmathbbE(Y)
qquadtextandqquad
mathbbSD(cY) = cmathbbSD(Y) ;,
$$
we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
$$
mathbbE(cY) = colorgreencmu ;,
qquad
mathbbSD(cY) = colorbrowncsigma ;,
qquadtextandqquad
mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
$$
Final result:
Now we just need to set $c = 4$, to get the final result
$$
mathbbE(X_T^4)
= mathrme^4mu + frac12(4sigma)^2
= underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Hint
I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.
The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
$$
E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
$$
To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
$$
E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
$$
There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.
add a comment |Â
up vote
0
down vote
Hint
I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.
The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
$$
E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
$$
To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
$$
E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
$$
There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint
I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.
The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
$$
E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
$$
To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
$$
E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
$$
There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.
Hint
I will let $X_T=X$ and write $ln Xsim mathcal N(mu,sigma^2)$ in place of your expressions, for simplicity.
The pdf of the lognormal distribution is $(xsigmasqrt2pi)^-1exp(frac-(ln x-mu)^22sigma^2)$ for $x>0$. Therefore,
$$
E[X^4]=int_0^infty x^4cdot frac1xsigmasqrt2picdot expleft(frac-(ln x-mu)^22sigma^2right),dx
$$
To compute this, start with the change of variables $z=ln x$, so that $dz=dx/x$. Then
$$
E[X^4]=frac1sigmasqrt2piint_-infty^infty e^4zcdot expleft(frac-(z-mu)^22sigma^2right),dx=frac1sigmasqrt2piint_-infty^infty expleft(4z-frac(z-mu)^22sigma^2right),dx
$$
There is a quadratic function of $z$ inside the $exp()$. The next step is to complete the square so that function becomes $exp(frac-(z-c)2sigma^2)$ for some $c$. Once you have done this, the integrand just becomes a shifted version of the normal cdf, which integrates to one. The result is just the constant you had to multiply by in order to complete the square.
answered May 22 at 16:56


Mike Earnest
16.3k11648
16.3k11648
add a comment |Â
add a comment |Â
up vote
0
down vote
Given:
You are given that
$$
ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
$$
Simplifications:
To begin with, let us define
$$
Y := ln(X_T) ;,
qquad
mu := ln(x) + dfracT-t2 ;,
qquadtextandqquad
sigma := T - t ;.
$$
Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
$$
mathbbE(Y) = colorgreenmu ;,
qquad
mathbbSD(Y) = colorbrownsigma ;,
qquadtextandqquad
mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
$$
To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.
Identities:
Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
$$
mathbbE(cY) = cmathbbE(Y)
qquadtextandqquad
mathbbSD(cY) = cmathbbSD(Y) ;,
$$
we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
$$
mathbbE(cY) = colorgreencmu ;,
qquad
mathbbSD(cY) = colorbrowncsigma ;,
qquadtextandqquad
mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
$$
Final result:
Now we just need to set $c = 4$, to get the final result
$$
mathbbE(X_T^4)
= mathrme^4mu + frac12(4sigma)^2
= underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
$$
add a comment |Â
up vote
0
down vote
Given:
You are given that
$$
ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
$$
Simplifications:
To begin with, let us define
$$
Y := ln(X_T) ;,
qquad
mu := ln(x) + dfracT-t2 ;,
qquadtextandqquad
sigma := T - t ;.
$$
Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
$$
mathbbE(Y) = colorgreenmu ;,
qquad
mathbbSD(Y) = colorbrownsigma ;,
qquadtextandqquad
mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
$$
To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.
Identities:
Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
$$
mathbbE(cY) = cmathbbE(Y)
qquadtextandqquad
mathbbSD(cY) = cmathbbSD(Y) ;,
$$
we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
$$
mathbbE(cY) = colorgreencmu ;,
qquad
mathbbSD(cY) = colorbrowncsigma ;,
qquadtextandqquad
mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
$$
Final result:
Now we just need to set $c = 4$, to get the final result
$$
mathbbE(X_T^4)
= mathrme^4mu + frac12(4sigma)^2
= underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Given:
You are given that
$$
ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
$$
Simplifications:
To begin with, let us define
$$
Y := ln(X_T) ;,
qquad
mu := ln(x) + dfracT-t2 ;,
qquadtextandqquad
sigma := T - t ;.
$$
Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
$$
mathbbE(Y) = colorgreenmu ;,
qquad
mathbbSD(Y) = colorbrownsigma ;,
qquadtextandqquad
mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
$$
To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.
Identities:
Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
$$
mathbbE(cY) = cmathbbE(Y)
qquadtextandqquad
mathbbSD(cY) = cmathbbSD(Y) ;,
$$
we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
$$
mathbbE(cY) = colorgreencmu ;,
qquad
mathbbSD(cY) = colorbrowncsigma ;,
qquadtextandqquad
mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
$$
Final result:
Now we just need to set $c = 4$, to get the final result
$$
mathbbE(X_T^4)
= mathrme^4mu + frac12(4sigma)^2
= underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
$$
Given:
You are given that
$$
ln(X_T) sim mathcalNleft(ln(x) + dfracT-t2, T-t right) ;.
$$
Simplifications:
To begin with, let us define
$$
Y := ln(X_T) ;,
qquad
mu := ln(x) + dfracT-t2 ;,
qquadtextandqquad
sigma := T - t ;.
$$
Then the given expression is equivalent to the much simpler expression $Y sim mathcalN(mu, sigma)$. For this, we already know that
$$
mathbbE(Y) = colorgreenmu ;,
qquad
mathbbSD(Y) = colorbrownsigma ;,
qquadtextandqquad
mathbbE(X_T) = mathrme^colorgreenmu + frac12colorbrownsigma^2 ;.
$$
To get from $mathbbE(X_T)$ to $mathbbE(X_T^4)$, we need an additional step.
Identities:
Notice that $ln(X_T^c) = cY$ for every $c > 0$. Using the identities
$$
mathbbE(cY) = cmathbbE(Y)
qquadtextandqquad
mathbbSD(cY) = cmathbbSD(Y) ;,
$$
we obtain $ln(X_T^c) = cY sim mathcalN(cmu, csigma)$. From this it follows that
$$
mathbbE(cY) = colorgreencmu ;,
qquad
mathbbSD(cY) = colorbrowncsigma ;,
qquadtextandqquad
mathbbE(X_T^c) = mathrme^colorgreencmu + frac12(colorbrowncsigma)^2 ;.
$$
Final result:
Now we just need to set $c = 4$, to get the final result
$$
mathbbE(X_T^4)
= mathrme^4mu + frac12(4sigma)^2
= underlineunderlinex^4 cdot mathrme^2(T-t) + 8(T-t)^2 ;.
$$
edited Aug 15 at 12:35
answered Jul 4 at 8:45


Björn Friedrich
2,47361731
2,47361731
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2791718%2fexpectation-of-x-t4-when-x-t-is-log-normally-distributed%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password