Finding $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$
The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?
multivariable-calculus spherical-coordinates
add a comment |Â
up vote
0
down vote
favorite
How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$
The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?
multivariable-calculus spherical-coordinates
Where exactly do you get stuck?
â Sobi
Aug 23 at 9:06
1
Del in spherical coordinates.
â Sobi
Aug 23 at 9:09
@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
â Yip Jung Hon
Aug 23 at 10:16
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$
The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?
multivariable-calculus spherical-coordinates
How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$
The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?
multivariable-calculus spherical-coordinates
edited Aug 23 at 9:09
Bernard
111k635103
111k635103
asked Aug 23 at 9:04
Yip Jung Hon
19911
19911
Where exactly do you get stuck?
â Sobi
Aug 23 at 9:06
1
Del in spherical coordinates.
â Sobi
Aug 23 at 9:09
@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
â Yip Jung Hon
Aug 23 at 10:16
add a comment |Â
Where exactly do you get stuck?
â Sobi
Aug 23 at 9:06
1
Del in spherical coordinates.
â Sobi
Aug 23 at 9:09
@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
â Yip Jung Hon
Aug 23 at 10:16
Where exactly do you get stuck?
â Sobi
Aug 23 at 9:06
Where exactly do you get stuck?
â Sobi
Aug 23 at 9:06
1
1
Del in spherical coordinates.
â Sobi
Aug 23 at 9:09
Del in spherical coordinates.
â Sobi
Aug 23 at 9:09
@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
â Yip Jung Hon
Aug 23 at 10:16
@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
â Yip Jung Hon
Aug 23 at 10:16
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
The Laplacian in spherical coordinates is given by:
$$
nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$
Proceeding carefully, the first term gives:
$$ begin align
fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
endalign nonumber $$
The second term gives:
$$ begin align
fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
endalign nonumber $$
The third term gives:
$$ begin align
fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
endalign nonumber $$
Adding up all three terms gives:
$$ begin align
nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
&= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
&= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
&= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
endalign nonumber $$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
The Laplacian in spherical coordinates is given by:
$$
nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$
Proceeding carefully, the first term gives:
$$ begin align
fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
endalign nonumber $$
The second term gives:
$$ begin align
fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
endalign nonumber $$
The third term gives:
$$ begin align
fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
endalign nonumber $$
Adding up all three terms gives:
$$ begin align
nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
&= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
&= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
&= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
endalign nonumber $$
add a comment |Â
up vote
1
down vote
The Laplacian in spherical coordinates is given by:
$$
nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$
Proceeding carefully, the first term gives:
$$ begin align
fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
endalign nonumber $$
The second term gives:
$$ begin align
fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
endalign nonumber $$
The third term gives:
$$ begin align
fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
endalign nonumber $$
Adding up all three terms gives:
$$ begin align
nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
&= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
&= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
&= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
endalign nonumber $$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The Laplacian in spherical coordinates is given by:
$$
nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$
Proceeding carefully, the first term gives:
$$ begin align
fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
endalign nonumber $$
The second term gives:
$$ begin align
fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
endalign nonumber $$
The third term gives:
$$ begin align
fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
endalign nonumber $$
Adding up all three terms gives:
$$ begin align
nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
&= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
&= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
&= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
endalign nonumber $$
The Laplacian in spherical coordinates is given by:
$$
nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$
Proceeding carefully, the first term gives:
$$ begin align
fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
endalign nonumber $$
The second term gives:
$$ begin align
fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
endalign nonumber $$
The third term gives:
$$ begin align
fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
endalign nonumber $$
Adding up all three terms gives:
$$ begin align
nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
&= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
&= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
&= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
endalign nonumber $$
answered Aug 23 at 22:35
Winter Soldier
350211
350211
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891888%2ffinding-nabla2v-if-v-frac2-cos-theta3-sin3-theta-cos-phir2%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Where exactly do you get stuck?
â Sobi
Aug 23 at 9:06
1
Del in spherical coordinates.
â Sobi
Aug 23 at 9:09
@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
â Yip Jung Hon
Aug 23 at 10:16