Finding $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$



The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?







share|cite|improve this question






















  • Where exactly do you get stuck?
    – Sobi
    Aug 23 at 9:06






  • 1




    Del in spherical coordinates.
    – Sobi
    Aug 23 at 9:09










  • @Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
    – Yip Jung Hon
    Aug 23 at 10:16














up vote
0
down vote

favorite












How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$



The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?







share|cite|improve this question






















  • Where exactly do you get stuck?
    – Sobi
    Aug 23 at 9:06






  • 1




    Del in spherical coordinates.
    – Sobi
    Aug 23 at 9:09










  • @Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
    – Yip Jung Hon
    Aug 23 at 10:16












up vote
0
down vote

favorite









up vote
0
down vote

favorite











How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$



The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?







share|cite|improve this question














How do you find $nabla^2V $ if $V=frac2costheta+3sin^3theta cosphir^2$



The correct answer is supposedly $frac6sintheta cosphi(4-5sin^2theta)r^4$, but I can't seem to get the answer. Can anyone help?









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 23 at 9:09









Bernard

111k635103




111k635103










asked Aug 23 at 9:04









Yip Jung Hon

19911




19911











  • Where exactly do you get stuck?
    – Sobi
    Aug 23 at 9:06






  • 1




    Del in spherical coordinates.
    – Sobi
    Aug 23 at 9:09










  • @Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
    – Yip Jung Hon
    Aug 23 at 10:16
















  • Where exactly do you get stuck?
    – Sobi
    Aug 23 at 9:06






  • 1




    Del in spherical coordinates.
    – Sobi
    Aug 23 at 9:09










  • @Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
    – Yip Jung Hon
    Aug 23 at 10:16















Where exactly do you get stuck?
– Sobi
Aug 23 at 9:06




Where exactly do you get stuck?
– Sobi
Aug 23 at 9:06




1




1




Del in spherical coordinates.
– Sobi
Aug 23 at 9:09




Del in spherical coordinates.
– Sobi
Aug 23 at 9:09












@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
– Yip Jung Hon
Aug 23 at 10:16




@Sobi Thanks for offering to help. This was where I got to: imgur.com/tDpPjxQ. Unfortunately, I can't get it to simplify. I'm not sure if I did a wrong step.
– Yip Jung Hon
Aug 23 at 10:16










1 Answer
1






active

oldest

votes

















up vote
1
down vote













The Laplacian in spherical coordinates is given by:
$$
nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$



Proceeding carefully, the first term gives:
$$ begin align
fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
endalign nonumber $$



The second term gives:
$$ begin align
fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
endalign nonumber $$



The third term gives:
$$ begin align
fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
endalign nonumber $$



Adding up all three terms gives:
$$ begin align
nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
&= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
&= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
&= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
endalign nonumber $$






share|cite|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891888%2ffinding-nabla2v-if-v-frac2-cos-theta3-sin3-theta-cos-phir2%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    The Laplacian in spherical coordinates is given by:
    $$
    nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$



    Proceeding carefully, the first term gives:
    $$ begin align
    fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
    r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
    fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
    Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
    endalign nonumber $$



    The second term gives:
    $$ begin align
    fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
    sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
    fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
    Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
    endalign nonumber $$



    The third term gives:
    $$ begin align
    fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
    fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
    Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
    endalign nonumber $$



    Adding up all three terms gives:
    $$ begin align
    nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
    &= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
    &= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
    &= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
    Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
    endalign nonumber $$






    share|cite|improve this answer
























      up vote
      1
      down vote













      The Laplacian in spherical coordinates is given by:
      $$
      nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$



      Proceeding carefully, the first term gives:
      $$ begin align
      fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
      r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
      fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
      Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
      endalign nonumber $$



      The second term gives:
      $$ begin align
      fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
      sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
      fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
      Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
      endalign nonumber $$



      The third term gives:
      $$ begin align
      fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
      fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
      Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
      endalign nonumber $$



      Adding up all three terms gives:
      $$ begin align
      nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
      &= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
      &= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
      &= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
      Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
      endalign nonumber $$






      share|cite|improve this answer






















        up vote
        1
        down vote










        up vote
        1
        down vote









        The Laplacian in spherical coordinates is given by:
        $$
        nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$



        Proceeding carefully, the first term gives:
        $$ begin align
        fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
        r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
        fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
        Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
        endalign nonumber $$



        The second term gives:
        $$ begin align
        fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
        sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
        fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
        Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
        endalign nonumber $$



        The third term gives:
        $$ begin align
        fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
        fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
        Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
        endalign nonumber $$



        Adding up all three terms gives:
        $$ begin align
        nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
        &= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
        &= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
        &= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
        Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
        endalign nonumber $$






        share|cite|improve this answer












        The Laplacian in spherical coordinates is given by:
        $$
        nabla^2V=frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) + frac1r^2sinthetafracpartialpartialtheta left(sintheta fracpartial Vpartial theta right) + frac1r^2sin^2thetafracpartial^2Vpartialphi^2 = 0$$



        Proceeding carefully, the first term gives:
        $$ begin align
        fracpartial Vpartialr &=frac-4costheta-6sin^3thetacosphir^3 \
        r^2fracpartial Vpartialr &= frac-4costheta-6sin^3thetacosphir \
        fracpartialpartialr left(r^2fracpartial Vpartialrright) &= frac4costheta + 6sin^3thetacosphir \
        Rightarrow frac1r^2fracpartialpartialr left(r^2 fracpartial Vpartial r right) &= frac4costheta + 6sin^3thetacosphir^4
        endalign nonumber $$



        The second term gives:
        $$ begin align
        fracpartial Vpartialtheta &=frac-2sintheta + 9sin^2thetacosthetacosphir^2 \
        sinthetafracpartial Vpartialtheta &=frac-2sin^2theta + 9sin^3thetacosthetacosphir^2 \
        fracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4sinthetacostheta + 9cosphi left(3sin^2theta - 4sin^4thetaright)r^2 \
        Rightarrow frac1r^2 sinthetafracpartialpartialthetaleft( sinthetafracpartial Vpartialtheta right) &= frac-4costheta + 9cosphi left(3sintheta - 4sin^3thetaright)r^4
        endalign nonumber $$



        The third term gives:
        $$ begin align
        fracpartial Vpartialphi &= -frac3sin^3thetar^2sinphi \
        fracpartial^2 Vpartialphi^2 &= -frac3sin^3thetar^2cosphi \
        Rightarrow frac1r^2 sin^2theta left(fracpartial^2 Vpartialphi^2 right) &= -frac3sinthetacosphir^4 \
        endalign nonumber $$



        Adding up all three terms gives:
        $$ begin align
        nabla^2V &= frac4costheta + 6sin^3thetacosphi - 4costheta + 9cosphi left(3sintheta - 4sin^3theta right) -3sinthetacosphi r^4 \
        &= frac6sin^3thetacosphi + 27sinthetacosphi -36sin^3thetacosphi -3sinthetacosphi r^4 \
        &= frac24sinthetacosphi -30sin^3thetacosphi r^4 \
        &= frac6sinthetacosphi left(4 -5sin^2theta right)r^4 \
        Rightarrow nabla^2V &= frac6sinthetacosphi left(4 -5sin^2thetaright)r^4
        endalign nonumber $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Aug 23 at 22:35









        Winter Soldier

        350211




        350211



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891888%2ffinding-nabla2v-if-v-frac2-cos-theta3-sin3-theta-cos-phir2%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            How to combine Bézier curves to a surface?

            Mutual Information Always Non-negative

            Why am i infinitely getting the same tweet with the Twitter Search API?