Calculating clusters based on position ellipses
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I'm looking for pointers to existing algorithms that take a number of position ellipses (centre, axis orientation, majr/minor axes) and cluster them together based on proximity to each other. The traditional way of clustering doesn't tend to use spatial size to inform the clusters.
An alternative way of thinking about it would be to assign a confidence value to the centre coordinates based on the size of the ellipse and use this to inform the cluster assignment.
If anyone can point me in the direction of doing this I would be grateful. I have searched and not found anything directly applicable.
geometry machine-learning clustering
add a comment |Â
up vote
1
down vote
favorite
I'm looking for pointers to existing algorithms that take a number of position ellipses (centre, axis orientation, majr/minor axes) and cluster them together based on proximity to each other. The traditional way of clustering doesn't tend to use spatial size to inform the clusters.
An alternative way of thinking about it would be to assign a confidence value to the centre coordinates based on the size of the ellipse and use this to inform the cluster assignment.
If anyone can point me in the direction of doing this I would be grateful. I have searched and not found anything directly applicable.
geometry machine-learning clustering
I think expectation minimization should be possible to adapt to your case. When it determines the likelihood that a given point belongs to a set, it can consider the probability distribution of that data point as well, not only its mean
â Aleksejs Fomins
Aug 23 at 10:59
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm looking for pointers to existing algorithms that take a number of position ellipses (centre, axis orientation, majr/minor axes) and cluster them together based on proximity to each other. The traditional way of clustering doesn't tend to use spatial size to inform the clusters.
An alternative way of thinking about it would be to assign a confidence value to the centre coordinates based on the size of the ellipse and use this to inform the cluster assignment.
If anyone can point me in the direction of doing this I would be grateful. I have searched and not found anything directly applicable.
geometry machine-learning clustering
I'm looking for pointers to existing algorithms that take a number of position ellipses (centre, axis orientation, majr/minor axes) and cluster them together based on proximity to each other. The traditional way of clustering doesn't tend to use spatial size to inform the clusters.
An alternative way of thinking about it would be to assign a confidence value to the centre coordinates based on the size of the ellipse and use this to inform the cluster assignment.
If anyone can point me in the direction of doing this I would be grateful. I have searched and not found anything directly applicable.
geometry machine-learning clustering
asked Aug 23 at 8:40
sailingH
61
61
I think expectation minimization should be possible to adapt to your case. When it determines the likelihood that a given point belongs to a set, it can consider the probability distribution of that data point as well, not only its mean
â Aleksejs Fomins
Aug 23 at 10:59
add a comment |Â
I think expectation minimization should be possible to adapt to your case. When it determines the likelihood that a given point belongs to a set, it can consider the probability distribution of that data point as well, not only its mean
â Aleksejs Fomins
Aug 23 at 10:59
I think expectation minimization should be possible to adapt to your case. When it determines the likelihood that a given point belongs to a set, it can consider the probability distribution of that data point as well, not only its mean
â Aleksejs Fomins
Aug 23 at 10:59
I think expectation minimization should be possible to adapt to your case. When it determines the likelihood that a given point belongs to a set, it can consider the probability distribution of that data point as well, not only its mean
â Aleksejs Fomins
Aug 23 at 10:59
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891873%2fcalculating-clusters-based-on-position-ellipses%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I think expectation minimization should be possible to adapt to your case. When it determines the likelihood that a given point belongs to a set, it can consider the probability distribution of that data point as well, not only its mean
â Aleksejs Fomins
Aug 23 at 10:59