Doubt on differential equation involving the complementary error function
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
How to find the general solution of $y''+2xy'-2ny=0$?
I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.
How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.
differential-equations error-function reduction-of-order-ode
add a comment |Â
up vote
1
down vote
favorite
How to find the general solution of $y''+2xy'-2ny=0$?
I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.
How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.
differential-equations error-function reduction-of-order-ode
no one? Pls some 1 provide some pointers to this.
â Magneto
Aug 23 at 11:34
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
How to find the general solution of $y''+2xy'-2ny=0$?
I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.
How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.
differential-equations error-function reduction-of-order-ode
How to find the general solution of $y''+2xy'-2ny=0$?
I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.
How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.
differential-equations error-function reduction-of-order-ode
edited Aug 23 at 21:29
Batominovski
24.8k22881
24.8k22881
asked Aug 23 at 10:13
Magneto
845213
845213
no one? Pls some 1 provide some pointers to this.
â Magneto
Aug 23 at 11:34
add a comment |Â
no one? Pls some 1 provide some pointers to this.
â Magneto
Aug 23 at 11:34
no one? Pls some 1 provide some pointers to this.
â Magneto
Aug 23 at 11:34
no one? Pls some 1 provide some pointers to this.
â Magneto
Aug 23 at 11:34
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.
For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$
On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.
Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.
For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$
On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.
Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
add a comment |Â
up vote
2
down vote
accepted
I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.
For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$
On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.
Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.
For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$
On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.
Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.
I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.
For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$
On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.
Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.
edited Aug 23 at 22:51
answered Aug 23 at 16:45
Batominovski
24.8k22881
24.8k22881
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
add a comment |Â
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
can u pls tell me some reference book for this? Its beyond my brain. WIll study.
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I need about error function stuff
â Magneto
Aug 23 at 17:55
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
â Batominovski
Aug 23 at 18:01
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891936%2fdoubt-on-differential-equation-involving-the-complementary-error-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
no one? Pls some 1 provide some pointers to this.
â Magneto
Aug 23 at 11:34