Doubt on differential equation involving the complementary error function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite













How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.







share|cite|improve this question






















  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34














up vote
1
down vote

favorite













How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.







share|cite|improve this question






















  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34












up vote
1
down vote

favorite









up vote
1
down vote

favorite












How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.







share|cite|improve this question















How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 23 at 21:29









Batominovski

24.8k22881




24.8k22881










asked Aug 23 at 10:13









Magneto

845213




845213











  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34
















  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34















no one? Pls some 1 provide some pointers to this.
– Magneto
Aug 23 at 11:34




no one? Pls some 1 provide some pointers to this.
– Magneto
Aug 23 at 11:34










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer






















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891936%2fdoubt-on-differential-equation-involving-the-complementary-error-function%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer






















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01















up vote
2
down vote



accepted










I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer






















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01













up vote
2
down vote



accepted







up vote
2
down vote



accepted






I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer














I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Aug 23 at 22:51

























answered Aug 23 at 16:45









Batominovski

24.8k22881




24.8k22881











  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01

















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01
















can u pls tell me some reference book for this? Its beyond my brain. WIll study.
– Magneto
Aug 23 at 17:55




can u pls tell me some reference book for this? Its beyond my brain. WIll study.
– Magneto
Aug 23 at 17:55












I need about error function stuff
– Magneto
Aug 23 at 17:55




I need about error function stuff
– Magneto
Aug 23 at 17:55












I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
– Batominovski
Aug 23 at 18:01





I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
– Batominovski
Aug 23 at 18:01


















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891936%2fdoubt-on-differential-equation-involving-the-complementary-error-function%23new-answer', 'question_page');

);

Post as a guest













































































這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Mutual Information Always Non-negative

Why am i infinitely getting the same tweet with the Twitter Search API?