Doubt on differential equation involving the complementary error function

Multi tool use
Multi tool use

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite













How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.







share|cite|improve this question






















  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34














up vote
1
down vote

favorite













How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.







share|cite|improve this question






















  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34












up vote
1
down vote

favorite









up vote
1
down vote

favorite












How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.







share|cite|improve this question















How to find the general solution of $y''+2xy'-2ny=0$?




I was solving a problem in this thread. The posted solution involves the error function which I am not aware of. I found this link.



How to find solution of $y''+2xy'-2ny=0$? The solution of this differential equation is given in the link as $$y=A,texterfc_n(x)+B,texterfc_n(-x),.$$ Even I am not aware of this notation. Kindly explain. If not, please suggest some online sources. My textbook does not have this topic.









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 23 at 21:29









Batominovski

24.8k22881




24.8k22881










asked Aug 23 at 10:13









Magneto

845213




845213











  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34
















  • no one? Pls some 1 provide some pointers to this.
    – Magneto
    Aug 23 at 11:34















no one? Pls some 1 provide some pointers to this.
– Magneto
Aug 23 at 11:34




no one? Pls some 1 provide some pointers to this.
– Magneto
Aug 23 at 11:34










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer






















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01











Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891936%2fdoubt-on-differential-equation-involving-the-complementary-error-function%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer






















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01















up vote
2
down vote



accepted










I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer






















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01













up vote
2
down vote



accepted







up vote
2
down vote



accepted






I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.






share|cite|improve this answer














I can give you a polynomial solution. For each integer $ngeq 0$, let $p_n:mathbbRtomathbbR$ denote the polynomial function
$$p_n(x)=sum_r=0^leftlfloorfracn2rightrfloor,frac12^2r,r!,(n-2r)!,x^n-2rtext for all xinmathbbR,.$$
Then, $y:=p_n$ is a solution to the differential equation
$$y''(x)+2x,y'(x)-2n,y(x)=0$$
for each integer $ngeq 0$. You can obtain the general solution by the Reduction-of-Order Method, but I am not sure how complicated this route of attempt will be. However, you can at least show that all solutions $y$ look like
$$y(x)=A,p_n(x)+B,p_n(x),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdt$$
for some constants $A$ and $B$.



For $n=0$ with $p_0(x)=1$, we obtain the general solution
$$y(x)=A+frac2sqrtpi,B,texterfc(x)=a,texterfc_0(+x)+b,texterfc_0(-x),,$$
where $a:=dfracA2+dfrac2sqrtpi,B$ and $b:=dfracA2$, as $texterfc_0=texterfc$ and $texterfc(+x)+texterfc(-x)=2$.
In general, we note that
$$(-1)^n,texterfc_n(+x)+texterfc_n(-x)=frac2sqrtpi,int_-infty^+infty,frac(x-t)^nn!,expleft(-t^2right),textdt=2,p_n(x),.$$
Hence, it remains to show that the function $q_n:mathbbRtomathbbR$ defined by
$$q_n(x):=frac2sqrtpi,left(fracp_n(x)2^n,n!right),int_x^infty,fracexp(-t^2)big(p_n(t)big)^2,textdttext for all xinmathbbR$$
is a linear combination of $texterfc_n(+x)$ and $texterfc_n(-x)$, noting that
$$texterfc_n(z)=frac2sqrtpi,int_z^infty,frac(t-z)^nn!,exp(-t^2),textdt,.$$
Perhaps, it helps to know that $p_n'(x)=p_n-1(x)$ and $texterfc'_n(x)=-texterfc_n-1(x)$ for every $n=1,2,3,ldots$. As far as I know,
$$q_0(x)=texterfc(x)=texterfc_0(x),,,,q_1(x)=texterfc_1(x),,text and q_2(x)=texterfc_2(x),.$$
I conjecture that
$$q_n(x)=texterfc_n(x)text for all n=0,1,2,3,ldots,.$$
It will help tremendously if I can show that
$$p_n(x),texterfc_n-1(x)+p_n-1(x),texterfc_n(x)=frac12^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),,tag*$$
or equivalently,
$$texterfc_n(-x),texterfc_n-1(+x)+texterfc_n(+x),texterfc_n-1(-x)=frac22^n,n!,left(frac2sqrtpi,expleft(-x^2right)right),.tag#$$




On the other hand, it is quite easy to show that $y(x):=texterfc_n(x)$ satisfies the homogeneous differential equation $y''(x)+2x,y'(x)-2n,y(x)=0$. For $n<2$, this can be easily checked by hand. For $ngeq 2$, we first note that, applying integration by parts, w have
$$texterfc_n-2(x)=frac2sqrtpi,int_x^infty,frac2t(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
That is,
$$texterfc_n''(x)=texterfc_n-2(x)=frac2sqrtpi,int_x^infty,fracbig(2x+2(t-x)big)(t-x)^n-1(n-1)!,exp(-t^2),textdt,.$$
Expanding the integral above yields
$$texterfc_n''(x)=small 2x,left(frac2sqrtpi,int_x^infty,frac(t-x)^n-1(n-1)!,exp(-t^2),textdtright)+2n,left(frac2sqrtpi,int_x^infty,frac(t-x)^nn!,exp(-t^2),textdtright),.$$
That is,
$$texterfc_n''(x)=2x,texterfc_n-1(x)+2n,texterfc_n(x),.$$
Because $texterfc_n'(x)=-texterfc_n-1(x)$, we deduce that
$$texterfc_n''(x)+2x,texterfc'_n(x)-2n,texterfc(x)=0,,$$ establishing our claim.



Now, we must have
$$texterfc_n(x)=lambda_n,p_n(x)+mu_n,q_n(x)$$
for some constants $lambda_n,mu_n$. For $n=0$, it is obvious that $lambda_0=0$ and $mu_0=1$. For $n>0$, we note that $texterfc_n(x)$ and $q_n(x)$ tend to $0$ as $xtoinfty$, whereas $p_n(x)toinfty$ when $xtoinfty$. This means $lambda_n=0$. It can be easily checked that, for an even integer $n>0$,
$$left.fractextdtextdxright|_x=0,left(fractexterfc_n(x)p_n(x)right)=frac2^nbinomnfracn2,left(frac2sqrtpiright)=left.fractextdtextdxright|_x=0,left(fracq_n(x)p_n(x)right),,$$
whence $mu_n=1$. For an odd integer $n>0$, we note that
$$lim_xto 0,Biggl(x,left(fractexterfc_n(x)p_n(x)right)Biggr)=frac2^n-1n,binomn-1fracn-12,left(frac2sqrtpiright)=lim_xto 0,Biggl(x,left(fracq_n(x)p_n(x)right)Biggr),,$$
so $mu_n=1$, as well. This shows that $q_n(x)=texterfc_n(x)$ for all $ninmathbbZ_geq0$. As a consequence, both (*) and (#) hold.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Aug 23 at 22:51

























answered Aug 23 at 16:45









Batominovski

24.8k22881




24.8k22881











  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01

















  • can u pls tell me some reference book for this? Its beyond my brain. WIll study.
    – Magneto
    Aug 23 at 17:55










  • I need about error function stuff
    – Magneto
    Aug 23 at 17:55










  • I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
    – Batominovski
    Aug 23 at 18:01
















can u pls tell me some reference book for this? Its beyond my brain. WIll study.
– Magneto
Aug 23 at 17:55




can u pls tell me some reference book for this? Its beyond my brain. WIll study.
– Magneto
Aug 23 at 17:55












I need about error function stuff
– Magneto
Aug 23 at 17:55




I need about error function stuff
– Magneto
Aug 23 at 17:55












I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
– Batominovski
Aug 23 at 18:01





I wasn't using any book though. I only know that $$texterfc_n(x)=int_x^infty,texterfc_n-1(t),textdt$$ and $texterfc_0=texterfc$. The only outside source I use in my answer is this: mathworld.wolfram.com/Erfc.html. However, there is a sign mistake in that link. So, I'm sorry, I can't give you a good reference.
– Batominovski
Aug 23 at 18:01


















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2891936%2fdoubt-on-differential-equation-involving-the-complementary-error-function%23new-answer', 'question_page');

);

Post as a guest













































































8Wbh J1SArwjGN1PPntc,5UnP,BR9lDfg0No3wjJgEZQzN
HNO6qNbh3,9exLEq

這個網誌中的熱門文章

How to combine Bézier curves to a surface?

Propositional logic and tautologies

Distribution of Stopped Wiener Process with Stochastic Volatility