Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for positive real $x,y,z$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite













Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.




I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.










share|cite|improve this question



























    up vote
    2
    down vote

    favorite













    Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.




    I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.










    share|cite|improve this question

























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite












      Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.




      I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.










      share|cite|improve this question
















      Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.




      I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.







      algebra-precalculus inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Sep 13 at 4:40









      max_zorn

      3,26061228




      3,26061228










      asked Sep 11 at 2:36









      Sufaid Saleel

      1,750628




      1,750628




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          $$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$



          Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$



          Here is how I've identified the coefficients:



          let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$



          Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$



          Compare the exponents of $x,y,z$ to find



          $$a=d,b=2a,c=4a$$



          Choose $a=1$






          share|cite|improve this answer





























            up vote
            6
            down vote













            $$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$






            share|cite|improve this answer


















            • 1




              Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
              – N. F. Taussig
              Sep 11 at 8:22










            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2912672%2fprove-that-x2xy2xyz2-ge-4xyz-4-for-positive-real-x-y-z%23new-answer', 'question_page');

            );

            Post as a guest






























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            4
            down vote



            accepted










            $$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$



            Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$



            Here is how I've identified the coefficients:



            let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$



            Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$



            Compare the exponents of $x,y,z$ to find



            $$a=d,b=2a,c=4a$$



            Choose $a=1$






            share|cite|improve this answer


























              up vote
              4
              down vote



              accepted










              $$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$



              Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$



              Here is how I've identified the coefficients:



              let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$



              Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$



              Compare the exponents of $x,y,z$ to find



              $$a=d,b=2a,c=4a$$



              Choose $a=1$






              share|cite|improve this answer
























                up vote
                4
                down vote



                accepted







                up vote
                4
                down vote



                accepted






                $$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$



                Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$



                Here is how I've identified the coefficients:



                let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$



                Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$



                Compare the exponents of $x,y,z$ to find



                $$a=d,b=2a,c=4a$$



                Choose $a=1$






                share|cite|improve this answer














                $$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$



                Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$



                Here is how I've identified the coefficients:



                let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$



                Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$



                Compare the exponents of $x,y,z$ to find



                $$a=d,b=2a,c=4a$$



                Choose $a=1$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Sep 11 at 5:39

























                answered Sep 11 at 5:34









                lab bhattacharjee

                218k14153268




                218k14153268




















                    up vote
                    6
                    down vote













                    $$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$






                    share|cite|improve this answer


















                    • 1




                      Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
                      – N. F. Taussig
                      Sep 11 at 8:22














                    up vote
                    6
                    down vote













                    $$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$






                    share|cite|improve this answer


















                    • 1




                      Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
                      – N. F. Taussig
                      Sep 11 at 8:22












                    up vote
                    6
                    down vote










                    up vote
                    6
                    down vote









                    $$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$






                    share|cite|improve this answer














                    $$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Sep 11 at 13:13

























                    answered Sep 11 at 2:50









                    dezdichado

                    5,7251928




                    5,7251928







                    • 1




                      Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
                      – N. F. Taussig
                      Sep 11 at 8:22












                    • 1




                      Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
                      – N. F. Taussig
                      Sep 11 at 8:22







                    1




                    1




                    Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
                    – N. F. Taussig
                    Sep 11 at 8:22




                    Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
                    – N. F. Taussig
                    Sep 11 at 8:22

















                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2912672%2fprove-that-x2xy2xyz2-ge-4xyz-4-for-positive-real-x-y-z%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    這個網誌中的熱門文章

                    How to combine Bézier curves to a surface?

                    Mutual Information Always Non-negative

                    Why am i infinitely getting the same tweet with the Twitter Search API?