Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for positive real $x,y,z$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.
I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.
algebra-precalculus inequality
add a comment |
up vote
2
down vote
favorite
Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.
I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.
algebra-precalculus inequality
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.
I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.
algebra-precalculus inequality
Prove that $x^2+xy^2+xyz^2 ge 4xyz-4$ for postive real $x,y,z$.
I tried AM-GM but failed. I also can't apply Cauchy-Schwarz. I think we have to change this inequality to apply any well-known inequality. Please help me.
algebra-precalculus inequality
algebra-precalculus inequality
edited Sep 13 at 4:40
max_zorn
3,26061228
3,26061228
asked Sep 11 at 2:36
Sufaid Saleel
1,750628
1,750628
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
$$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$
Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$
Here is how I've identified the coefficients:
let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$
Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$
Compare the exponents of $x,y,z$ to find
$$a=d,b=2a,c=4a$$
Choose $a=1$
add a comment |
up vote
6
down vote
$$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$
1
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
$$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$
Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$
Here is how I've identified the coefficients:
let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$
Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$
Compare the exponents of $x,y,z$ to find
$$a=d,b=2a,c=4a$$
Choose $a=1$
add a comment |
up vote
4
down vote
accepted
$$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$
Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$
Here is how I've identified the coefficients:
let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$
Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$
Compare the exponents of $x,y,z$ to find
$$a=d,b=2a,c=4a$$
Choose $a=1$
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
$$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$
Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$
Here is how I've identified the coefficients:
let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$
Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$
Compare the exponents of $x,y,z$ to find
$$a=d,b=2a,c=4a$$
Choose $a=1$
$$x^2+xy^2+xyz^2+4=x^2+2cdotdfracxy^22+4cdotdfracxyz^24+4$$
Now using AM-GM inequality, $$dfracx^2+2cdotdfracxy^22+4cdotdfracxyz^24+41+2+4+1gesqrt[1+2+4+1]x^2cdotleft(cdotdfracxy^22right)^2cdotleft(dfracxyz^24right)^4cdot4$$
Here is how I've identified the coefficients:
let $$x^2+xy^2+xyz^2+4=acdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4d$$
Now by AM-GM, $$dfracacdotdfracx^2a+bcdotdfracxy^2b+ccdotdfracxyz^2c+dcdotdfrac4da+b+c+dge?$$
Compare the exponents of $x,y,z$ to find
$$a=d,b=2a,c=4a$$
Choose $a=1$
edited Sep 11 at 5:39
answered Sep 11 at 5:34
lab bhattacharjee
218k14153268
218k14153268
add a comment |
add a comment |
up vote
6
down vote
$$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$
1
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
add a comment |
up vote
6
down vote
$$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$
1
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
add a comment |
up vote
6
down vote
up vote
6
down vote
$$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$
$$x^2+xy^2+xyz^2-4xyz+4 = x^2+xy^2-4xy+4+xy(z-2)^2 = $$ $$x^2+x(y-2)^2+xy(z-2)^2-4x+4 =(x-2)^2+x(y-2)^2+xy(z-2)^2geq 0.$$
edited Sep 11 at 13:13
answered Sep 11 at 2:50
dezdichado
5,7251928
5,7251928
1
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
add a comment |
1
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
1
1
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
Shouldn't we have $x^2 + x(y - 2)^2 + colorredxy(z - 2)^2 - 4x + 4 = (x - 2)^2 + x(y - 2)^2 + xy(z - 2)^2$?
– N. F. Taussig
Sep 11 at 8:22
add a comment |
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2912672%2fprove-that-x2xy2xyz2-ge-4xyz-4-for-positive-real-x-y-z%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password