How to show that $gamma=limlimits_n to inftyleft(sumlimits_k=1^nzeta(2k)over kright)-ln(2n)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
3












Proposed:




$$gamma=lim_n to inftyleftleft[,sum_k=1^nzetaleft(,2k,right)over k,right] -lnleft(,2n,right)righttag1$$




Where $gamma$ is Euler-Mascheroni Constant



My try



Well-known $$gamma=lim_nto inftyleft(sum_k=1^n1over kright)-ln(n)tag2$$



How do we prove $(1)?$










share|cite|improve this question























  • Anyway for the question use $$pi;x;cot(pi;x)-1=-2sum_k=1^infty zeta(2k);x^2k$$
    – Zaid Alyafeai
    May 8 '17 at 12:15















up vote
4
down vote

favorite
3












Proposed:




$$gamma=lim_n to inftyleftleft[,sum_k=1^nzetaleft(,2k,right)over k,right] -lnleft(,2n,right)righttag1$$




Where $gamma$ is Euler-Mascheroni Constant



My try



Well-known $$gamma=lim_nto inftyleft(sum_k=1^n1over kright)-ln(n)tag2$$



How do we prove $(1)?$










share|cite|improve this question























  • Anyway for the question use $$pi;x;cot(pi;x)-1=-2sum_k=1^infty zeta(2k);x^2k$$
    – Zaid Alyafeai
    May 8 '17 at 12:15













up vote
4
down vote

favorite
3









up vote
4
down vote

favorite
3






3





Proposed:




$$gamma=lim_n to inftyleftleft[,sum_k=1^nzetaleft(,2k,right)over k,right] -lnleft(,2n,right)righttag1$$




Where $gamma$ is Euler-Mascheroni Constant



My try



Well-known $$gamma=lim_nto inftyleft(sum_k=1^n1over kright)-ln(n)tag2$$



How do we prove $(1)?$










share|cite|improve this question















Proposed:




$$gamma=lim_n to inftyleftleft[,sum_k=1^nzetaleft(,2k,right)over k,right] -lnleft(,2n,right)righttag1$$




Where $gamma$ is Euler-Mascheroni Constant



My try



Well-known $$gamma=lim_nto inftyleft(sum_k=1^n1over kright)-ln(n)tag2$$



How do we prove $(1)?$







sequences-and-series limits zeta-functions eulers-constant






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 13 '17 at 3:43









Felix Marin

65.6k7107138




65.6k7107138










asked May 8 '17 at 12:04









gymbvghjkgkjkhgfkl

1




1











  • Anyway for the question use $$pi;x;cot(pi;x)-1=-2sum_k=1^infty zeta(2k);x^2k$$
    – Zaid Alyafeai
    May 8 '17 at 12:15

















  • Anyway for the question use $$pi;x;cot(pi;x)-1=-2sum_k=1^infty zeta(2k);x^2k$$
    – Zaid Alyafeai
    May 8 '17 at 12:15
















Anyway for the question use $$pi;x;cot(pi;x)-1=-2sum_k=1^infty zeta(2k);x^2k$$
– Zaid Alyafeai
May 8 '17 at 12:15





Anyway for the question use $$pi;x;cot(pi;x)-1=-2sum_k=1^infty zeta(2k);x^2k$$
– Zaid Alyafeai
May 8 '17 at 12:15











2 Answers
2






active

oldest

votes

















up vote
4
down vote



accepted










Note that $$sum_kgeq1fraczetaleft(2kright)-1k=sum_kgeq1frac1ksum_mgeq2frac1m^2k$$ $$=sum_mgeq2sum_kgeq1frac1km^2k=-sum_mgeq2logleft(1-frac1m^2right)$$ $$=-logleft(prod_mgeq2left(1-frac1m^2right)right)$$ and it is well known that $$prod_mgeq2left(1-frac1m^2right)=frac12$$ since $$prod_m=2^Nleft(1-frac1m^2right)=prod_m=2^Nfracm^2-1m^2=prod_m=2^Nfracm-1mprod_m=2^Nfracm+1m=frac1NfracN+12$$ so $$sum_kgeq1fraczetaleft(2kright)-1k=colorredlogleft(2right).$$ The result obviously implies your limit since $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-logleft(2nright)right)=lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-sum_k=1^nfrac1k+sum_k=1^nfrac1k-logleft(2nright)right)$$ $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)-1k+sum_k=1^nfrac1k-logleft(nright)-logleft(2right)right)=lim_nrightarrowinftyleft(sum_k=1^nfrac1k-logleft(nright)right)=colorbluegamma.$$






share|cite|improve this answer





























    up vote
    3
    down vote













    Using the given formula (2) it is sufficient to prove that $$sum_k=1^infty frac1k (zeta(2k) - 1 ) = ln 2.$$ So now set $f(x) := sum_k=1 ^infty frac1k (zeta(2k) - 1 ) x^2k$. Then $$xf'(x) = 2 sum_k=1^infty (zeta(2k) - 1 ) x^2k = - pi x cot(pi x ) + 1 - frac2x^21 - x^2.$$ Therefore, integrating $f'(x)$, $$f(1-epsilon) - f(epsilon) = ln(1-epsilon) - ln(1 -epsilon^2) +ln(2 - epsilon)$$ for $0<epsilon<1$. Letting $epsilon to 0$ we get the desired conclusion.






    share|cite|improve this answer






















      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2271380%2fhow-to-show-that-gamma-lim-limits-n-to-infty-left-sum-limits-k-1n%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote



      accepted










      Note that $$sum_kgeq1fraczetaleft(2kright)-1k=sum_kgeq1frac1ksum_mgeq2frac1m^2k$$ $$=sum_mgeq2sum_kgeq1frac1km^2k=-sum_mgeq2logleft(1-frac1m^2right)$$ $$=-logleft(prod_mgeq2left(1-frac1m^2right)right)$$ and it is well known that $$prod_mgeq2left(1-frac1m^2right)=frac12$$ since $$prod_m=2^Nleft(1-frac1m^2right)=prod_m=2^Nfracm^2-1m^2=prod_m=2^Nfracm-1mprod_m=2^Nfracm+1m=frac1NfracN+12$$ so $$sum_kgeq1fraczetaleft(2kright)-1k=colorredlogleft(2right).$$ The result obviously implies your limit since $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-logleft(2nright)right)=lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-sum_k=1^nfrac1k+sum_k=1^nfrac1k-logleft(2nright)right)$$ $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)-1k+sum_k=1^nfrac1k-logleft(nright)-logleft(2right)right)=lim_nrightarrowinftyleft(sum_k=1^nfrac1k-logleft(nright)right)=colorbluegamma.$$






      share|cite|improve this answer


























        up vote
        4
        down vote



        accepted










        Note that $$sum_kgeq1fraczetaleft(2kright)-1k=sum_kgeq1frac1ksum_mgeq2frac1m^2k$$ $$=sum_mgeq2sum_kgeq1frac1km^2k=-sum_mgeq2logleft(1-frac1m^2right)$$ $$=-logleft(prod_mgeq2left(1-frac1m^2right)right)$$ and it is well known that $$prod_mgeq2left(1-frac1m^2right)=frac12$$ since $$prod_m=2^Nleft(1-frac1m^2right)=prod_m=2^Nfracm^2-1m^2=prod_m=2^Nfracm-1mprod_m=2^Nfracm+1m=frac1NfracN+12$$ so $$sum_kgeq1fraczetaleft(2kright)-1k=colorredlogleft(2right).$$ The result obviously implies your limit since $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-logleft(2nright)right)=lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-sum_k=1^nfrac1k+sum_k=1^nfrac1k-logleft(2nright)right)$$ $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)-1k+sum_k=1^nfrac1k-logleft(nright)-logleft(2right)right)=lim_nrightarrowinftyleft(sum_k=1^nfrac1k-logleft(nright)right)=colorbluegamma.$$






        share|cite|improve this answer
























          up vote
          4
          down vote



          accepted







          up vote
          4
          down vote



          accepted






          Note that $$sum_kgeq1fraczetaleft(2kright)-1k=sum_kgeq1frac1ksum_mgeq2frac1m^2k$$ $$=sum_mgeq2sum_kgeq1frac1km^2k=-sum_mgeq2logleft(1-frac1m^2right)$$ $$=-logleft(prod_mgeq2left(1-frac1m^2right)right)$$ and it is well known that $$prod_mgeq2left(1-frac1m^2right)=frac12$$ since $$prod_m=2^Nleft(1-frac1m^2right)=prod_m=2^Nfracm^2-1m^2=prod_m=2^Nfracm-1mprod_m=2^Nfracm+1m=frac1NfracN+12$$ so $$sum_kgeq1fraczetaleft(2kright)-1k=colorredlogleft(2right).$$ The result obviously implies your limit since $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-logleft(2nright)right)=lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-sum_k=1^nfrac1k+sum_k=1^nfrac1k-logleft(2nright)right)$$ $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)-1k+sum_k=1^nfrac1k-logleft(nright)-logleft(2right)right)=lim_nrightarrowinftyleft(sum_k=1^nfrac1k-logleft(nright)right)=colorbluegamma.$$






          share|cite|improve this answer














          Note that $$sum_kgeq1fraczetaleft(2kright)-1k=sum_kgeq1frac1ksum_mgeq2frac1m^2k$$ $$=sum_mgeq2sum_kgeq1frac1km^2k=-sum_mgeq2logleft(1-frac1m^2right)$$ $$=-logleft(prod_mgeq2left(1-frac1m^2right)right)$$ and it is well known that $$prod_mgeq2left(1-frac1m^2right)=frac12$$ since $$prod_m=2^Nleft(1-frac1m^2right)=prod_m=2^Nfracm^2-1m^2=prod_m=2^Nfracm-1mprod_m=2^Nfracm+1m=frac1NfracN+12$$ so $$sum_kgeq1fraczetaleft(2kright)-1k=colorredlogleft(2right).$$ The result obviously implies your limit since $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-logleft(2nright)right)=lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)k-sum_k=1^nfrac1k+sum_k=1^nfrac1k-logleft(2nright)right)$$ $$lim_nrightarrowinftyleft(sum_k=1^nfraczetaleft(2kright)-1k+sum_k=1^nfrac1k-logleft(nright)-logleft(2right)right)=lim_nrightarrowinftyleft(sum_k=1^nfrac1k-logleft(nright)right)=colorbluegamma.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited May 8 '17 at 16:50

























          answered May 8 '17 at 16:44









          Marco Cantarini

          28.8k23272




          28.8k23272




















              up vote
              3
              down vote













              Using the given formula (2) it is sufficient to prove that $$sum_k=1^infty frac1k (zeta(2k) - 1 ) = ln 2.$$ So now set $f(x) := sum_k=1 ^infty frac1k (zeta(2k) - 1 ) x^2k$. Then $$xf'(x) = 2 sum_k=1^infty (zeta(2k) - 1 ) x^2k = - pi x cot(pi x ) + 1 - frac2x^21 - x^2.$$ Therefore, integrating $f'(x)$, $$f(1-epsilon) - f(epsilon) = ln(1-epsilon) - ln(1 -epsilon^2) +ln(2 - epsilon)$$ for $0<epsilon<1$. Letting $epsilon to 0$ we get the desired conclusion.






              share|cite|improve this answer


























                up vote
                3
                down vote













                Using the given formula (2) it is sufficient to prove that $$sum_k=1^infty frac1k (zeta(2k) - 1 ) = ln 2.$$ So now set $f(x) := sum_k=1 ^infty frac1k (zeta(2k) - 1 ) x^2k$. Then $$xf'(x) = 2 sum_k=1^infty (zeta(2k) - 1 ) x^2k = - pi x cot(pi x ) + 1 - frac2x^21 - x^2.$$ Therefore, integrating $f'(x)$, $$f(1-epsilon) - f(epsilon) = ln(1-epsilon) - ln(1 -epsilon^2) +ln(2 - epsilon)$$ for $0<epsilon<1$. Letting $epsilon to 0$ we get the desired conclusion.






                share|cite|improve this answer
























                  up vote
                  3
                  down vote










                  up vote
                  3
                  down vote









                  Using the given formula (2) it is sufficient to prove that $$sum_k=1^infty frac1k (zeta(2k) - 1 ) = ln 2.$$ So now set $f(x) := sum_k=1 ^infty frac1k (zeta(2k) - 1 ) x^2k$. Then $$xf'(x) = 2 sum_k=1^infty (zeta(2k) - 1 ) x^2k = - pi x cot(pi x ) + 1 - frac2x^21 - x^2.$$ Therefore, integrating $f'(x)$, $$f(1-epsilon) - f(epsilon) = ln(1-epsilon) - ln(1 -epsilon^2) +ln(2 - epsilon)$$ for $0<epsilon<1$. Letting $epsilon to 0$ we get the desired conclusion.






                  share|cite|improve this answer














                  Using the given formula (2) it is sufficient to prove that $$sum_k=1^infty frac1k (zeta(2k) - 1 ) = ln 2.$$ So now set $f(x) := sum_k=1 ^infty frac1k (zeta(2k) - 1 ) x^2k$. Then $$xf'(x) = 2 sum_k=1^infty (zeta(2k) - 1 ) x^2k = - pi x cot(pi x ) + 1 - frac2x^21 - x^2.$$ Therefore, integrating $f'(x)$, $$f(1-epsilon) - f(epsilon) = ln(1-epsilon) - ln(1 -epsilon^2) +ln(2 - epsilon)$$ for $0<epsilon<1$. Letting $epsilon to 0$ we get the desired conclusion.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited May 8 '17 at 14:18

























                  answered May 8 '17 at 13:32







                  user438618


































                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2271380%2fhow-to-show-that-gamma-lim-limits-n-to-infty-left-sum-limits-k-1n%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

                      Why am i infinitely getting the same tweet with the Twitter Search API?

                      Solve: $(3xy-2ay^2)dx+(x^2-2axy)dy=0$