How to calculate the scalar curvature under a change of metric in a Riemannian 3-manifold

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $g=text d t^2+ gamma_t$ be the metric of a Riemann manifold $M$ of dimension 3 , where $gamma_t$ is the metric on the surface $Sigma_t=partial M$.



If $hatg=rho^2(t)text dt^2+gamma_t$



then the scalar curvature $hatR$ of $hatg$ is



$hatR(t,x)=frac1rho^2(t)(R(t,x)+2K(t,x)(rho^2(t)-1)+frac2rho'(t)rho(t)H(t,x))$



where $K(t,x)$ and $H(t,x)$ are the Gauss and mean curvature of $Sigma_t$ with respect to $g$ respectively.



Here I don't know how to calculate $hatR$ ,I need someone to help me .










share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    Let $g=text d t^2+ gamma_t$ be the metric of a Riemann manifold $M$ of dimension 3 , where $gamma_t$ is the metric on the surface $Sigma_t=partial M$.



    If $hatg=rho^2(t)text dt^2+gamma_t$



    then the scalar curvature $hatR$ of $hatg$ is



    $hatR(t,x)=frac1rho^2(t)(R(t,x)+2K(t,x)(rho^2(t)-1)+frac2rho'(t)rho(t)H(t,x))$



    where $K(t,x)$ and $H(t,x)$ are the Gauss and mean curvature of $Sigma_t$ with respect to $g$ respectively.



    Here I don't know how to calculate $hatR$ ,I need someone to help me .










    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $g=text d t^2+ gamma_t$ be the metric of a Riemann manifold $M$ of dimension 3 , where $gamma_t$ is the metric on the surface $Sigma_t=partial M$.



      If $hatg=rho^2(t)text dt^2+gamma_t$



      then the scalar curvature $hatR$ of $hatg$ is



      $hatR(t,x)=frac1rho^2(t)(R(t,x)+2K(t,x)(rho^2(t)-1)+frac2rho'(t)rho(t)H(t,x))$



      where $K(t,x)$ and $H(t,x)$ are the Gauss and mean curvature of $Sigma_t$ with respect to $g$ respectively.



      Here I don't know how to calculate $hatR$ ,I need someone to help me .










      share|cite|improve this question













      Let $g=text d t^2+ gamma_t$ be the metric of a Riemann manifold $M$ of dimension 3 , where $gamma_t$ is the metric on the surface $Sigma_t=partial M$.



      If $hatg=rho^2(t)text dt^2+gamma_t$



      then the scalar curvature $hatR$ of $hatg$ is



      $hatR(t,x)=frac1rho^2(t)(R(t,x)+2K(t,x)(rho^2(t)-1)+frac2rho'(t)rho(t)H(t,x))$



      where $K(t,x)$ and $H(t,x)$ are the Gauss and mean curvature of $Sigma_t$ with respect to $g$ respectively.



      Here I don't know how to calculate $hatR$ ,I need someone to help me .







      geometry curvature






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 11 at 3:52









      陶夕夕

      112




      112

























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2912728%2fhow-to-calculate-the-scalar-curvature-under-a-change-of-metric-in-a-riemannian-3%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2912728%2fhow-to-calculate-the-scalar-curvature-under-a-change-of-metric-in-a-riemannian-3%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          How to combine Bézier curves to a surface?

          Mutual Information Always Non-negative

          Why am i infinitely getting the same tweet with the Twitter Search API?