Evaluation of the limit $lim_qrightarrow 1 fracphi^5(q)_inftyphi(q^5)_infty$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












Given the Euler function $phi(q)=prod_n = 1^infty(1-q^n)$ which is a modular form where $q=exp(2pi i tau)$, $|q|lt1$




Then what is the limit $lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty$ ?








share|cite|improve this question


















  • 1




    You can use the expression for Dedekind's eta function in terms of elliptic integral $K$ and modulus $k$. Thus we have $$q^1/24phi(q)=2^-1/6sqrtfrac2Kpik^1/12k'^1/3$$
    – Paramanand Singh
    Aug 16 at 6:55











  • @Paramanand Singh: that's actually a good idea
    – Nicco
    Aug 16 at 7:09














up vote
2
down vote

favorite
1












Given the Euler function $phi(q)=prod_n = 1^infty(1-q^n)$ which is a modular form where $q=exp(2pi i tau)$, $|q|lt1$




Then what is the limit $lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty$ ?








share|cite|improve this question


















  • 1




    You can use the expression for Dedekind's eta function in terms of elliptic integral $K$ and modulus $k$. Thus we have $$q^1/24phi(q)=2^-1/6sqrtfrac2Kpik^1/12k'^1/3$$
    – Paramanand Singh
    Aug 16 at 6:55











  • @Paramanand Singh: that's actually a good idea
    – Nicco
    Aug 16 at 7:09












up vote
2
down vote

favorite
1









up vote
2
down vote

favorite
1






1





Given the Euler function $phi(q)=prod_n = 1^infty(1-q^n)$ which is a modular form where $q=exp(2pi i tau)$, $|q|lt1$




Then what is the limit $lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty$ ?








share|cite|improve this question














Given the Euler function $phi(q)=prod_n = 1^infty(1-q^n)$ which is a modular form where $q=exp(2pi i tau)$, $|q|lt1$




Then what is the limit $lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty$ ?










share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 17 at 0:42

























asked Aug 16 at 6:25









Nicco

1,073726




1,073726







  • 1




    You can use the expression for Dedekind's eta function in terms of elliptic integral $K$ and modulus $k$. Thus we have $$q^1/24phi(q)=2^-1/6sqrtfrac2Kpik^1/12k'^1/3$$
    – Paramanand Singh
    Aug 16 at 6:55











  • @Paramanand Singh: that's actually a good idea
    – Nicco
    Aug 16 at 7:09












  • 1




    You can use the expression for Dedekind's eta function in terms of elliptic integral $K$ and modulus $k$. Thus we have $$q^1/24phi(q)=2^-1/6sqrtfrac2Kpik^1/12k'^1/3$$
    – Paramanand Singh
    Aug 16 at 6:55











  • @Paramanand Singh: that's actually a good idea
    – Nicco
    Aug 16 at 7:09







1




1




You can use the expression for Dedekind's eta function in terms of elliptic integral $K$ and modulus $k$. Thus we have $$q^1/24phi(q)=2^-1/6sqrtfrac2Kpik^1/12k'^1/3$$
– Paramanand Singh
Aug 16 at 6:55





You can use the expression for Dedekind's eta function in terms of elliptic integral $K$ and modulus $k$. Thus we have $$q^1/24phi(q)=2^-1/6sqrtfrac2Kpik^1/12k'^1/3$$
– Paramanand Singh
Aug 16 at 6:55













@Paramanand Singh: that's actually a good idea
– Nicco
Aug 16 at 7:09




@Paramanand Singh: that's actually a good idea
– Nicco
Aug 16 at 7:09










2 Answers
2






active

oldest

votes

















up vote
3
down vote













When $qto 1^-$, $tau to 0$, hence $-1/tau to iinfty$,
$$beginalignedfracphi ^5(q)_infty phi (q^5)_infty = fraceta ^5(tau )eta (5tau ) &= fracleft( frac - 1tau i right)^5/2eta ^5(frac - 1tau )left( frac - 15tau i right)^1/2eta (frac - 15tau ) \ &= -fracsqrt 5 tau ^2frace^ - frac5pi i12tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi nitau right)^5 e^ - fracpi i60tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi ni5tau right) \ &sim -fracsqrt 5 tau ^2e^ - frac2pi i5tau to 0endaligned$$
Note that the two infinite products both $to 1$.






share|cite|improve this answer




















  • @Paramanand Singh: do you agree with this answer?
    – Nicco
    Aug 16 at 7:39







  • 2




    @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
    – Paramanand Singh
    Aug 16 at 8:14











  • I like this direct approach
    – Nicco
    Aug 17 at 0:22

















up vote
2
down vote













Given the following identity $frac(q)^5_infty(q^5)_infty=1+5sum_n=1^inftyfrac(-1)^n nq^fracn(n+1)2prod_k=1^n-1Big(R_k+q^kBig)$ from my old post where $frac1R_n=R(q^n,q)$ is the Generalized Rogers Ramanujan continued fraction



If we consider the fact that $lim_xrightarrow 0+frac1R(e^-nx,e^-x)=phi$
where $phi=frac1+sqrt52$ is the golden ratio




Then we are led to $$lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty=1+sum_n=1^inftyfrac5n (-1)^n (1+phi)^n$$




Whereby the infinite series on the RHS converges to zero.






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884463%2fevaluation-of-the-limit-lim-q-rightarrow-1-frac-phi5q-infty-phiq%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote













    When $qto 1^-$, $tau to 0$, hence $-1/tau to iinfty$,
    $$beginalignedfracphi ^5(q)_infty phi (q^5)_infty = fraceta ^5(tau )eta (5tau ) &= fracleft( frac - 1tau i right)^5/2eta ^5(frac - 1tau )left( frac - 15tau i right)^1/2eta (frac - 15tau ) \ &= -fracsqrt 5 tau ^2frace^ - frac5pi i12tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi nitau right)^5 e^ - fracpi i60tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi ni5tau right) \ &sim -fracsqrt 5 tau ^2e^ - frac2pi i5tau to 0endaligned$$
    Note that the two infinite products both $to 1$.






    share|cite|improve this answer




















    • @Paramanand Singh: do you agree with this answer?
      – Nicco
      Aug 16 at 7:39







    • 2




      @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
      – Paramanand Singh
      Aug 16 at 8:14











    • I like this direct approach
      – Nicco
      Aug 17 at 0:22














    up vote
    3
    down vote













    When $qto 1^-$, $tau to 0$, hence $-1/tau to iinfty$,
    $$beginalignedfracphi ^5(q)_infty phi (q^5)_infty = fraceta ^5(tau )eta (5tau ) &= fracleft( frac - 1tau i right)^5/2eta ^5(frac - 1tau )left( frac - 15tau i right)^1/2eta (frac - 15tau ) \ &= -fracsqrt 5 tau ^2frace^ - frac5pi i12tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi nitau right)^5 e^ - fracpi i60tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi ni5tau right) \ &sim -fracsqrt 5 tau ^2e^ - frac2pi i5tau to 0endaligned$$
    Note that the two infinite products both $to 1$.






    share|cite|improve this answer




















    • @Paramanand Singh: do you agree with this answer?
      – Nicco
      Aug 16 at 7:39







    • 2




      @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
      – Paramanand Singh
      Aug 16 at 8:14











    • I like this direct approach
      – Nicco
      Aug 17 at 0:22












    up vote
    3
    down vote










    up vote
    3
    down vote









    When $qto 1^-$, $tau to 0$, hence $-1/tau to iinfty$,
    $$beginalignedfracphi ^5(q)_infty phi (q^5)_infty = fraceta ^5(tau )eta (5tau ) &= fracleft( frac - 1tau i right)^5/2eta ^5(frac - 1tau )left( frac - 15tau i right)^1/2eta (frac - 15tau ) \ &= -fracsqrt 5 tau ^2frace^ - frac5pi i12tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi nitau right)^5 e^ - fracpi i60tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi ni5tau right) \ &sim -fracsqrt 5 tau ^2e^ - frac2pi i5tau to 0endaligned$$
    Note that the two infinite products both $to 1$.






    share|cite|improve this answer












    When $qto 1^-$, $tau to 0$, hence $-1/tau to iinfty$,
    $$beginalignedfracphi ^5(q)_infty phi (q^5)_infty = fraceta ^5(tau )eta (5tau ) &= fracleft( frac - 1tau i right)^5/2eta ^5(frac - 1tau )left( frac - 15tau i right)^1/2eta (frac - 15tau ) \ &= -fracsqrt 5 tau ^2frace^ - frac5pi i12tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi nitau right)^5 e^ - fracpi i60tau prodlimits_n = 1^infty left( 1 - e^ - frac2pi ni5tau right) \ &sim -fracsqrt 5 tau ^2e^ - frac2pi i5tau to 0endaligned$$
    Note that the two infinite products both $to 1$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Aug 16 at 7:29









    pisco

    10k21336




    10k21336











    • @Paramanand Singh: do you agree with this answer?
      – Nicco
      Aug 16 at 7:39







    • 2




      @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
      – Paramanand Singh
      Aug 16 at 8:14











    • I like this direct approach
      – Nicco
      Aug 17 at 0:22
















    • @Paramanand Singh: do you agree with this answer?
      – Nicco
      Aug 16 at 7:39







    • 2




      @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
      – Paramanand Singh
      Aug 16 at 8:14











    • I like this direct approach
      – Nicco
      Aug 17 at 0:22















    @Paramanand Singh: do you agree with this answer?
    – Nicco
    Aug 16 at 7:39





    @Paramanand Singh: do you agree with this answer?
    – Nicco
    Aug 16 at 7:39





    2




    2




    @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
    – Paramanand Singh
    Aug 16 at 8:14





    @Nicco: using my approach via elliptic integrals also gives the result as $0$ but with more difficulty. The current answer gives a more elegant / direct approach. +1 to pisco.
    – Paramanand Singh
    Aug 16 at 8:14













    I like this direct approach
    – Nicco
    Aug 17 at 0:22




    I like this direct approach
    – Nicco
    Aug 17 at 0:22










    up vote
    2
    down vote













    Given the following identity $frac(q)^5_infty(q^5)_infty=1+5sum_n=1^inftyfrac(-1)^n nq^fracn(n+1)2prod_k=1^n-1Big(R_k+q^kBig)$ from my old post where $frac1R_n=R(q^n,q)$ is the Generalized Rogers Ramanujan continued fraction



    If we consider the fact that $lim_xrightarrow 0+frac1R(e^-nx,e^-x)=phi$
    where $phi=frac1+sqrt52$ is the golden ratio




    Then we are led to $$lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty=1+sum_n=1^inftyfrac5n (-1)^n (1+phi)^n$$




    Whereby the infinite series on the RHS converges to zero.






    share|cite|improve this answer


























      up vote
      2
      down vote













      Given the following identity $frac(q)^5_infty(q^5)_infty=1+5sum_n=1^inftyfrac(-1)^n nq^fracn(n+1)2prod_k=1^n-1Big(R_k+q^kBig)$ from my old post where $frac1R_n=R(q^n,q)$ is the Generalized Rogers Ramanujan continued fraction



      If we consider the fact that $lim_xrightarrow 0+frac1R(e^-nx,e^-x)=phi$
      where $phi=frac1+sqrt52$ is the golden ratio




      Then we are led to $$lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty=1+sum_n=1^inftyfrac5n (-1)^n (1+phi)^n$$




      Whereby the infinite series on the RHS converges to zero.






      share|cite|improve this answer
























        up vote
        2
        down vote










        up vote
        2
        down vote









        Given the following identity $frac(q)^5_infty(q^5)_infty=1+5sum_n=1^inftyfrac(-1)^n nq^fracn(n+1)2prod_k=1^n-1Big(R_k+q^kBig)$ from my old post where $frac1R_n=R(q^n,q)$ is the Generalized Rogers Ramanujan continued fraction



        If we consider the fact that $lim_xrightarrow 0+frac1R(e^-nx,e^-x)=phi$
        where $phi=frac1+sqrt52$ is the golden ratio




        Then we are led to $$lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty=1+sum_n=1^inftyfrac5n (-1)^n (1+phi)^n$$




        Whereby the infinite series on the RHS converges to zero.






        share|cite|improve this answer














        Given the following identity $frac(q)^5_infty(q^5)_infty=1+5sum_n=1^inftyfrac(-1)^n nq^fracn(n+1)2prod_k=1^n-1Big(R_k+q^kBig)$ from my old post where $frac1R_n=R(q^n,q)$ is the Generalized Rogers Ramanujan continued fraction



        If we consider the fact that $lim_xrightarrow 0+frac1R(e^-nx,e^-x)=phi$
        where $phi=frac1+sqrt52$ is the golden ratio




        Then we are led to $$lim_qrightarrow 1fracphi^5(q)_inftyphi(q^5)_infty=1+sum_n=1^inftyfrac5n (-1)^n (1+phi)^n$$




        Whereby the infinite series on the RHS converges to zero.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Aug 17 at 0:19

























        answered Aug 17 at 0:07









        Nicco

        1,073726




        1,073726






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2884463%2fevaluation-of-the-limit-lim-q-rightarrow-1-frac-phi5q-infty-phiq%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

            Why am i infinitely getting the same tweet with the Twitter Search API?

            Carbon dioxide