$lim_n to infty langlebar A_nx,yrangle = langle Ax,yrangle$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.



Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.



To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.



Facing difficulty to prove the fact.









share|cite|improve this question


















  • 1




    You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
    – Kavi Rama Murthy
    Aug 25 at 5:39










  • @KaviRamaMurthy I have edited the question. Please see now. Thank you.
    – user8795
    Aug 26 at 16:13














up vote
2
down vote

favorite












Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.



Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.



To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.



Facing difficulty to prove the fact.









share|cite|improve this question


















  • 1




    You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
    – Kavi Rama Murthy
    Aug 25 at 5:39










  • @KaviRamaMurthy I have edited the question. Please see now. Thank you.
    – user8795
    Aug 26 at 16:13












up vote
2
down vote

favorite









up vote
2
down vote

favorite











Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.



Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.



To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.



Facing difficulty to prove the fact.









share|cite|improve this question














Let $A$ be an operator on a separable Hilbert Space $H$. So we can consider $A=(a_ij)_1leq i,jleq infty$.



Let $tilde A_n = $$
beginpmatrix
A_n & 0 \
0 & -I
endpmatrix
$ where $tilde A_n $ is an infinite matrix and $A_n=(a_ij)_1leq i,jleq n$, the upper corner $n times n$ submatrix of $A$ and $I$ is the infinite order identity matrix.



To prove $displaystylelim_n to infty langletilde A_nx,yrangle = langle Ax,yrangle$. i.e. $tilde A_nto A$, in Weak Operator Topology.



Facing difficulty to prove the fact.











share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 26 at 16:12

























asked Aug 25 at 5:30









user8795

5,30561842




5,30561842







  • 1




    You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
    – Kavi Rama Murthy
    Aug 25 at 5:39










  • @KaviRamaMurthy I have edited the question. Please see now. Thank you.
    – user8795
    Aug 26 at 16:13












  • 1




    You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
    – Kavi Rama Murthy
    Aug 25 at 5:39










  • @KaviRamaMurthy I have edited the question. Please see now. Thank you.
    – user8795
    Aug 26 at 16:13







1




1




You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
– Kavi Rama Murthy
Aug 25 at 5:39




You are probably referring to a separable HS identified with $l^2$. Otherwise the notation $A_nx$ doesn't make sense.
– Kavi Rama Murthy
Aug 25 at 5:39












@KaviRamaMurthy I have edited the question. Please see now. Thank you.
– user8795
Aug 26 at 16:13




@KaviRamaMurthy I have edited the question. Please see now. Thank you.
– user8795
Aug 26 at 16:13










2 Answers
2






active

oldest

votes

















up vote
1
down vote



accepted










Here is a solution assuming A is a contraction.
Let $A=beginpmatrix
A_n & X_n\
Y_n & Z_n\
endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
$vertlangle (A-tildeA_n)x,yranglevert\
=vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
So $tildeA_nxrightarrowtextWOT A$






share|cite|improve this answer



























    up vote
    1
    down vote













    Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).



    $textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
    beginalign*
    P_n:H&rightarrow H\
    (x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
    endalign*
    beginalign*
    P_n^perp:&Hrightarrow H\
    (x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
    endalign*
    so $Id-P_n=P_n^perp$.



    Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
    beginalign*
    ||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
    &leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
    &leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
    endalign*
    and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.



    $textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that



    beginalign*
    |langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
    &leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
    &= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
    &leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
    endalign*
    where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.



    $textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.






    share|cite|improve this answer






















    • You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
      – user8795
      Aug 28 at 6:48










    • I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
      – Esteban Gutiérrez
      Aug 29 at 21:21










    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2893817%2flim-n-to-infty-langle-bar-a-nx-y-rangle-langle-ax-y-rangle%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Here is a solution assuming A is a contraction.
    Let $A=beginpmatrix
    A_n & X_n\
    Y_n & Z_n\
    endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
    $vertlangle (A-tildeA_n)x,yranglevert\
    =vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
    leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
    leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
    longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
    So $tildeA_nxrightarrowtextWOT A$






    share|cite|improve this answer
























      up vote
      1
      down vote



      accepted










      Here is a solution assuming A is a contraction.
      Let $A=beginpmatrix
      A_n & X_n\
      Y_n & Z_n\
      endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
      $vertlangle (A-tildeA_n)x,yranglevert\
      =vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
      leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
      leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
      longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
      So $tildeA_nxrightarrowtextWOT A$






      share|cite|improve this answer






















        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Here is a solution assuming A is a contraction.
        Let $A=beginpmatrix
        A_n & X_n\
        Y_n & Z_n\
        endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
        $vertlangle (A-tildeA_n)x,yranglevert\
        =vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
        leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
        leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
        longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
        So $tildeA_nxrightarrowtextWOT A$






        share|cite|improve this answer












        Here is a solution assuming A is a contraction.
        Let $A=beginpmatrix
        A_n & X_n\
        Y_n & Z_n\
        endpmatrix$ and $x=(x_i)_1leq ileq infty,y=(y_i)_1leq ileqinftyin mathcalH.$ Then
        $vertlangle (A-tildeA_n)x,yranglevert\
        =vertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nrangle+langle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyrangle+langle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\leqvertlangle X_n(x_i)_nleq i leq infty, (y_i)_1leq i leq nranglevert+vertlangle Y_n(x_i)_1leq i leq n, (y_i)_nleq i leq inftyranglevert+vertlangle (Z_n+I)(x_i)_nleq i leq infty,(y_i)_nleq i leq inftyranglevert\
        leqVert X_nVertVert (x_i)_nleq i leq inftyVertVert(y_i)_1leq i leq nVert+Vert Y_nVertVert(x_i)_1leq i leq nVertVert (y_i)_nleq i leq inftyVertVert+Vert(Z_n+I)Vert(x_i)_nleq i leq inftyVertVert (y_i)_nleq i leq inftyVert\
        leq(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=1^n vert y_ivert^2)^1/2+(sumlimits_i=1^n vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2+2(sumlimits_i=n^infty vert x_ivert^2)^1/2(sumlimits_i=n^infty vert y_ivert^2)^1/2\
        longrightarrow 0$ whenever $nrightarrow infty $ as $x,yin mathcalH$
        So $tildeA_nxrightarrowtextWOT A$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Sep 1 at 14:39









        Piku

        535




        535




















            up vote
            1
            down vote













            Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).



            $textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
            beginalign*
            P_n:H&rightarrow H\
            (x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
            endalign*
            beginalign*
            P_n^perp:&Hrightarrow H\
            (x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
            endalign*
            so $Id-P_n=P_n^perp$.



            Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
            beginalign*
            ||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
            &leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
            &leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
            endalign*
            and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.



            $textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that



            beginalign*
            |langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
            &leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
            endalign*
            where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.



            $textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.






            share|cite|improve this answer






















            • You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
              – user8795
              Aug 28 at 6:48










            • I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
              – Esteban Gutiérrez
              Aug 29 at 21:21














            up vote
            1
            down vote













            Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).



            $textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
            beginalign*
            P_n:H&rightarrow H\
            (x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
            endalign*
            beginalign*
            P_n^perp:&Hrightarrow H\
            (x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
            endalign*
            so $Id-P_n=P_n^perp$.



            Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
            beginalign*
            ||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
            &leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
            &leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
            endalign*
            and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.



            $textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that



            beginalign*
            |langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
            &leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
            endalign*
            where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.



            $textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.






            share|cite|improve this answer






















            • You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
              – user8795
              Aug 28 at 6:48










            • I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
              – Esteban Gutiérrez
              Aug 29 at 21:21












            up vote
            1
            down vote










            up vote
            1
            down vote









            Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).



            $textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
            beginalign*
            P_n:H&rightarrow H\
            (x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
            endalign*
            beginalign*
            P_n^perp:&Hrightarrow H\
            (x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
            endalign*
            so $Id-P_n=P_n^perp$.



            Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
            beginalign*
            ||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
            &leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
            &leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
            endalign*
            and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.



            $textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that



            beginalign*
            |langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
            &leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
            endalign*
            where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.



            $textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.






            share|cite|improve this answer














            Assuming that $A$ is a bounded operator I've proved the strong convergence. For the unbounded case the same trick fails, a similar trick seems to work for the weak topology and symmetric operators though (assuming $yin D(A)$).



            $textbf(Bounded case)$ Assume $||A||<infty$ and define the operators
            beginalign*
            P_n:H&rightarrow H\
            (x_1,x_2,dots)&mapsto (x_1,dots,x_n,0,0dots),
            endalign*
            beginalign*
            P_n^perp:&Hrightarrow H\
            (x_1,x_2,dots)&mapsto(0,dots,0,x_n+1,x_n+2,dots),
            endalign*
            so $Id-P_n=P_n^perp$.



            Now note that $tildeA_n=P_nAP_n-P_n^perp$ and $A=P_nA+P_n^perpA$, so for every $xin H$
            beginalign*
            ||(A-tildeA_n)x||&= ||(P_nA+P_n^perp-P_nAP_n+P_n^perp)x||\
            &leq ||P_nA(Id-P_n)x||+||P_n^perp(A+Id)x||\
            &leq ||P_n||cdot||A||cdot||P_n^perpx||+||P_n^perp(A+Id)x||,
            endalign*
            and we can conclude proving that $||P_n||leq 1$ (which is actually easy!) and for every $yin H$ $P_n^perpyrightarrow 0$, so taking $y=x$ and $y=(A+Id)x$ would do the job.



            $textbf(Unbounded Symmetric case)$ Let $x,yin D(A)$ and note that



            beginalign*
            |langle (A-tildeA_n) x,yrangle|&=|langle (P_nA+P_n^perp-P_nAP_n+P_n^perp)x,yrangle|\
            &leq |langle P_nAP_n^perpx,yrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &= |langle P_n^perpx,AP_nyrangle|+|langle P_n^perp(A+Id)x,yrangle|\
            &leq ||P_n^perpx||cdot||AP_ny||+||P_n^perp(A+Id)x||cdot||y||,
            endalign*
            where we have used that $P_n$ is also symmetric and $P_n^perprightarrow 0$ strongly as I've mentioned before.



            $textbfRemark:$ Rigorously and In order to make the last inequality to have sense, we need that $yin D(P_n_k)$ for a sequence $n_kinmathbbN$ such that $n_krightarrowinfty$, but I'm convinced that if $yin D(A)$ there is no problem with defining $AP_ny$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Aug 29 at 21:18

























            answered Aug 27 at 17:39









            Esteban Gutiérrez

            13810




            13810











            • You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
              – user8795
              Aug 28 at 6:48










            • I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
              – Esteban Gutiérrez
              Aug 29 at 21:21
















            • You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
              – user8795
              Aug 28 at 6:48










            • I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
              – Esteban Gutiérrez
              Aug 29 at 21:21















            You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
            – user8795
            Aug 28 at 6:48




            You have computed $tildeA_n x=((Ax)_1,dots,(Ax)_n, -x_n+1, -x_n+2,dots),$, but it is not correct. Please check that and edit you answer accordingly!!
            – user8795
            Aug 28 at 6:48












            I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
            – Esteban Gutiérrez
            Aug 29 at 21:21




            I've done an entirely new proof! I'm sorry for the first one, this time I've actually thought a lot more the problem and added some cases where I could prove the result.
            – Esteban Gutiérrez
            Aug 29 at 21:21

















             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2893817%2flim-n-to-infty-langle-bar-a-nx-y-rangle-langle-ax-y-rangle%23new-answer', 'question_page');

            );

            Post as a guest













































































            這個網誌中的熱門文章

            Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

            Why am i infinitely getting the same tweet with the Twitter Search API?

            Carbon dioxide