Inequality $lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$ for complex $u,v$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
2












This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):




a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.



b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$




For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?










share|cite|improve this question

























    up vote
    2
    down vote

    favorite
    2












    This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):




    a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.



    b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$




    For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?










    share|cite|improve this question























      up vote
      2
      down vote

      favorite
      2









      up vote
      2
      down vote

      favorite
      2






      2





      This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):




      a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.



      b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$




      For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?










      share|cite|improve this question













      This is exercise 4.(b) from Theory of Complex Functions, GTM 122, page 17. I was able to solve exercise 4.(a), but I don't see how this could help solving 4.(b):




      a) Show that from $(1+lvert vrvert^2) u=(1+lvert urvert^2)v,,u,vinmathbbC$, it follows that either $u=v$ or $baruv=1$.



      b) Show that for $u,vinmathbbC$ with $lvert urvert<1, lvert vrvert<1$ and $baruvne ubarv$, we always have $$lvert(1+lvert urvert^2) v-(1+lvert vrvert^2)urvert > lvert ubarv-baruvrvert$$




      For a), I took modulus of both sides and get either $lvert urvert=lvert vrvert$ or $lvert urvert lvert vrvert=1$, where the conclusion follows easily. For b), I tried substituting $u=x+iy$ and $v=p+iq$ but the resulting inequality is too complicated and it's difficult to see where the condition $lvert ubarv-baruvrvert=2lvert xq-yprvertne 0$ is used. Any advice?







      complex-analysis complex-numbers






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 4 at 12:06









      Dilemian

      382512




      382512




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted
          +100










          For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
          $$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
          If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
          $$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$



          For Part (b), we shall prove that
          $$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
          for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.



          Observe that
          $$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
          \
          &=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
          endalign$$
          Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
          beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
          &= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
          endalign
          Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
          beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
          \
          &geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
          endalign
          where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
          beginalign
          Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
          \
          &geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
          and the claim is proven. (The equality case is easy to verify.)






          share|cite|improve this answer



























            up vote
            2
            down vote













            Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then



            $$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
            &= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
            &textSince norm of a complex number is at least absolute value of its imaginary part, \
            &ge |(1+|u|^2) mathrmIm (v)| \
            &= (1+|u|^2) |mathrmIm(v)| \
            &ge 2|u| |mathrmIm(v)| \
            &= |u| |overlinev - v| \
            &= |uoverlinev - overlineuv| text (since $u$ is real) \
            &= Right
            endalign*
            $$






            share|cite|improve this answer




















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904968%2finequality-lvert1-lvert-u-rvert2-v-1-lvert-v-rvert2u-rvert-lvert-u%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote



              accepted
              +100










              For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
              $$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
              If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
              $$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$



              For Part (b), we shall prove that
              $$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
              for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.



              Observe that
              $$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
              \
              &=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
              endalign$$
              Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
              beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
              &= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
              endalign
              Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
              beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
              \
              &geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
              endalign
              where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
              beginalign
              Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
              \
              &geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
              and the claim is proven. (The equality case is easy to verify.)






              share|cite|improve this answer
























                up vote
                1
                down vote



                accepted
                +100










                For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
                $$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
                If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
                $$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$



                For Part (b), we shall prove that
                $$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
                for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.



                Observe that
                $$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
                \
                &=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
                endalign$$
                Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
                beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
                &= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
                endalign
                Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
                beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
                \
                &geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
                endalign
                where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
                beginalign
                Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
                \
                &geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
                and the claim is proven. (The equality case is easy to verify.)






                share|cite|improve this answer






















                  up vote
                  1
                  down vote



                  accepted
                  +100







                  up vote
                  1
                  down vote



                  accepted
                  +100




                  +100




                  For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
                  $$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
                  If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
                  $$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$



                  For Part (b), we shall prove that
                  $$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
                  for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.



                  Observe that
                  $$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
                  \
                  &=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
                  endalign$$
                  Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
                  beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
                  &= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
                  endalign
                  Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
                  beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
                  \
                  &geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
                  endalign
                  where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
                  beginalign
                  Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
                  \
                  &geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
                  and the claim is proven. (The equality case is easy to verify.)






                  share|cite|improve this answer












                  For Part (a), we note that $big(1+|v|^2big),u=big(1+|u|^2big),v$ implies $big(1+|v|^2big),|u|=big(1+|u|^2big),|v|$. That is,
                  $$big(|u|-|v|big),big(1-|u|,|v|big)=0,.$$
                  If $|u|=|v|$, then we obtain $u=v$. If $uneq v$, then $|u|,|v|=1$, whence $uneq 0$ and $v=dfrac1^2,u$. Ergo,
                  $$baru,v=baru,left(frac1^2,uright)=frac^2^2=1,.$$



                  For Part (b), we shall prove that
                  $$Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|geq big|u,barv-baru,vbig|tag*$$
                  for all $u,vinmathbbC$, and the equality occurs if and only if $u=v$. If $u=0$ or $v=0$, then (*) trivially holds. From now on, we assume that $uneq 0$ and $vneq 0$.



                  Observe that
                  $$beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&=Big(big(1+|v|^2big),u-big(1+|u|^2big),vBig),Big(big(1+|v|^2big),baru-big(1+|u|^2big),barvBig)
                  \
                  &=big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig),.
                  endalign$$
                  Using the AM-GM Inequality on $big(1+|v|^2big)^2,|u|^2+big(1+|u|^2big)^2,|v|^2$, we obtain
                  beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,big(1+|u|^2big),big(1+|v|^2big),|u|,|v|-2,big(1+|u|^2big),big(1+|v|^2big),textRebig(u,barvbig)\
                  &= 2,big(1+|u|^2big),big(1+|v|^2big),Big(|u|,|v|-textRebig(u,barvbig)Big),.
                  endalign
                  Because $big(textIm(z)big)^2=z^2-big(textRe(z)big)^2$ for every $zinmathbbC$, we get
                  beginalignBig|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geq2,left(frac^2big),big(1+,right),Big(textImbig(u,barvbig)Big)^2
                  \
                  &geq 2,left(frac^2big),big(1+right),Big(textImbig(u,barvbig)Big)^2,,
                  endalign
                  where we have applied the trivial inequality $textRe(z)leq |z|$ for each $zinmathbbC$. Finally, using the AM-GM Inequality $t+dfrac1tgeq 2$ for all $t>0$, we get
                  beginalign
                  Big|big(1+|v|^2big),u-big(1+|u|^2big),vBig|^2&geqleft(|u|+frac1uright),left(|v|+frac1right),Big(textImbig(u,barvbig)Big)^2
                  \
                  &geq 4,Big(textImbig(u,barvbig)Big)^2=big(u,barv-baru,vbig)^2,,endalign
                  and the claim is proven. (The equality case is easy to verify.)







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 10 at 4:33









                  Batominovski

                  25.9k22881




                  25.9k22881




















                      up vote
                      2
                      down vote













                      Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then



                      $$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
                      &= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
                      &textSince norm of a complex number is at least absolute value of its imaginary part, \
                      &ge |(1+|u|^2) mathrmIm (v)| \
                      &= (1+|u|^2) |mathrmIm(v)| \
                      &ge 2|u| |mathrmIm(v)| \
                      &= |u| |overlinev - v| \
                      &= |uoverlinev - overlineuv| text (since $u$ is real) \
                      &= Right
                      endalign*
                      $$






                      share|cite|improve this answer
























                        up vote
                        2
                        down vote













                        Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then



                        $$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
                        &= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
                        &textSince norm of a complex number is at least absolute value of its imaginary part, \
                        &ge |(1+|u|^2) mathrmIm (v)| \
                        &= (1+|u|^2) |mathrmIm(v)| \
                        &ge 2|u| |mathrmIm(v)| \
                        &= |u| |overlinev - v| \
                        &= |uoverlinev - overlineuv| text (since $u$ is real) \
                        &= Right
                        endalign*
                        $$






                        share|cite|improve this answer






















                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then



                          $$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
                          &= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
                          &textSince norm of a complex number is at least absolute value of its imaginary part, \
                          &ge |(1+|u|^2) mathrmIm (v)| \
                          &= (1+|u|^2) |mathrmIm(v)| \
                          &ge 2|u| |mathrmIm(v)| \
                          &= |u| |overlinev - v| \
                          &= |uoverlinev - overlineuv| text (since $u$ is real) \
                          &= Right
                          endalign*
                          $$






                          share|cite|improve this answer












                          Notice that both sides remain the same if we substitute $u to cu, v to cv$ for $|c| = 1$. Thus without loss of generality, we can assume $u$ is real. Then



                          $$beginalign*Left&= |(1+|u|^2)v - (1+|v|^2)u| \
                          &= |left((1+|u|^2) mathrmRe (v) - (1+|v|^2)uright) + left((1+|u|^2) mathrmIm(v)right) i|\
                          &textSince norm of a complex number is at least absolute value of its imaginary part, \
                          &ge |(1+|u|^2) mathrmIm (v)| \
                          &= (1+|u|^2) |mathrmIm(v)| \
                          &ge 2|u| |mathrmIm(v)| \
                          &= |u| |overlinev - v| \
                          &= |uoverlinev - overlineuv| text (since $u$ is real) \
                          &= Right
                          endalign*
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Sep 10 at 4:33









                          Pig

                          207113




                          207113



























                               

                              draft saved


                              draft discarded















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2904968%2finequality-lvert1-lvert-u-rvert2-v-1-lvert-v-rvert2u-rvert-lvert-u%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              這個網誌中的熱門文章

                              Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

                              Why am i infinitely getting the same tweet with the Twitter Search API?

                              Carbon dioxide