Does this matrix sequence always converge?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite












Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?



This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$



However, I do not know how to prove this statement for arbitrary $n$.



Any help will be appreciated.










share|cite|improve this question























  • I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
    – Saucy O'Path
    Sep 6 at 11:10











  • @Saucy O'Path, yes it was. Thank You for correcting my typo!
    – Yanior Weg
    Sep 6 at 11:14














up vote
4
down vote

favorite












Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?



This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$



However, I do not know how to prove this statement for arbitrary $n$.



Any help will be appreciated.










share|cite|improve this question























  • I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
    – Saucy O'Path
    Sep 6 at 11:10











  • @Saucy O'Path, yes it was. Thank You for correcting my typo!
    – Yanior Weg
    Sep 6 at 11:14












up vote
4
down vote

favorite









up vote
4
down vote

favorite











Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?



This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$



However, I do not know how to prove this statement for arbitrary $n$.



Any help will be appreciated.










share|cite|improve this question















Suppose $a_0, a_1, ... , a_n-1$ are real numbers from $(0; 1)$, such that $sum_k=0^n-1 a_k=1$. Suppose $A = (c_ij)$ is a $n times n$ matrix with entries $c_ij = a_(i-j)%n$, where $%$ is modulo operation. Is it always true that $lim_m to infty A^m = frac1n beginpmatrix 1 & 1 & cdots & 1 \1 & 1 & cdots & 1 \ vdots & vdots & ddots & vdots \ 1 & 1 & cdots & 1 endpmatrix$?



This statement is true for $n = 2$:
Suppose $A = beginpmatrix a_0 & 1 - a_0 \ 1 - a_0 & a_0 endpmatrix = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 1-2a_0 endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix$. Because $a_0$ is in $(0; 1)$, $1-2a_0$ is in $(-1;1)$. Thus $$lim_m to infty A^m = beginpmatrix 1 & -1 \ 1 & 1endpmatrix^-1beginpmatrix 1 & 0 \ 0 & 0endpmatrixbeginpmatrix 1 & -1 \ 1 & 1 endpmatrix = frac12beginpmatrix 1 & 1 \ 1 & 1 endpmatrix$$



However, I do not know how to prove this statement for arbitrary $n$.



Any help will be appreciated.







linear-algebra sequences-and-series matrices limits matrix-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 6 at 11:09









Saucy O'Path

3,841424




3,841424










asked Sep 6 at 11:05









Yanior Weg

1,1581731




1,1581731











  • I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
    – Saucy O'Path
    Sep 6 at 11:10











  • @Saucy O'Path, yes it was. Thank You for correcting my typo!
    – Yanior Weg
    Sep 6 at 11:14
















  • I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
    – Saucy O'Path
    Sep 6 at 11:10











  • @Saucy O'Path, yes it was. Thank You for correcting my typo!
    – Yanior Weg
    Sep 6 at 11:14















I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
– Saucy O'Path
Sep 6 at 11:10





I took the liberty of changing $sum_k=0^n-1a_n$ to $sum_k=0^n-1a_k=1$, as that was probably the intention.
– Saucy O'Path
Sep 6 at 11:10













@Saucy O'Path, yes it was. Thank You for correcting my typo!
– Yanior Weg
Sep 6 at 11:14




@Saucy O'Path, yes it was. Thank You for correcting my typo!
– Yanior Weg
Sep 6 at 11:14










2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










This follows directly from the Perron-Frobenius theorem.






share|cite|improve this answer



























    up vote
    2
    down vote













    Your matrix $A$ is a circulant matrix:



    $$A = beginbmatrix
    a_0 & a_1 & cdots & a_n-1\
    a_n-1 & a_0 & cdots & a_n-2\
    vdots & vdots & cdots & vdots \
    a_1 & a_2 & cdots & a_0\
    endbmatrix$$



    $A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.



    Therefore we can diagonalize $A$ as follows:



    $$A = P^-1DP = beginbmatrix
    1 & 1 & cdots & 1\
    omega_0 & omega_1 & cdots & omega_n-1\
    vdots & vdots & cdots & vdots \
    omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
    endbmatrix^-1
    beginbmatrix
    lambda_0 & 0 & cdots & 0 \
    0 & lambda_1 & cdots & 0\
    vdots & vdots & cdots & vdots \
    0 & 0 & cdots & lambda_n-1\
    endbmatrix
    beginbmatrix
    1 & 1 & cdots & 1\
    omega_0 & omega_1 & cdots & omega_n-1\
    vdots & vdots & cdots & vdots \
    omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
    endbmatrix$$



    The triangle inequality for the eigenvalues gives



    $$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$



    with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.



    Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives



    beginalign
    lim_mtoinfty A^m &= beginbmatrix
    1 & 1 & cdots & 1\
    omega_0 & omega_1 & cdots & omega_n-1\
    vdots & vdots & cdots & vdots \
    omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
    endbmatrix^-1
    beginbmatrix
    1 & 0 & cdots & 0 \
    0 & 0 & cdots & 0\
    vdots & vdots & cdots & vdots \
    0 & 0 & cdots & 0\
    endbmatrix
    beginbmatrix
    1 & 1 & cdots & 1\
    omega_0 & omega_1 & cdots & omega_n-1\
    vdots & vdots & cdots & vdots \
    omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
    endbmatrix\
    &= beginbmatrix
    1 & 1 & cdots & 1\
    omega_0 & omega_1 & cdots & omega_n-1\
    vdots & vdots & cdots & vdots \
    omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
    endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
    endalign



    You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.



    The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907338%2fdoes-this-matrix-sequence-always-converge%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      This follows directly from the Perron-Frobenius theorem.






      share|cite|improve this answer
























        up vote
        2
        down vote



        accepted










        This follows directly from the Perron-Frobenius theorem.






        share|cite|improve this answer






















          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          This follows directly from the Perron-Frobenius theorem.






          share|cite|improve this answer












          This follows directly from the Perron-Frobenius theorem.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 6 at 11:34









          kimchi lover

          8,96031128




          8,96031128




















              up vote
              2
              down vote













              Your matrix $A$ is a circulant matrix:



              $$A = beginbmatrix
              a_0 & a_1 & cdots & a_n-1\
              a_n-1 & a_0 & cdots & a_n-2\
              vdots & vdots & cdots & vdots \
              a_1 & a_2 & cdots & a_0\
              endbmatrix$$



              $A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.



              Therefore we can diagonalize $A$ as follows:



              $$A = P^-1DP = beginbmatrix
              1 & 1 & cdots & 1\
              omega_0 & omega_1 & cdots & omega_n-1\
              vdots & vdots & cdots & vdots \
              omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
              endbmatrix^-1
              beginbmatrix
              lambda_0 & 0 & cdots & 0 \
              0 & lambda_1 & cdots & 0\
              vdots & vdots & cdots & vdots \
              0 & 0 & cdots & lambda_n-1\
              endbmatrix
              beginbmatrix
              1 & 1 & cdots & 1\
              omega_0 & omega_1 & cdots & omega_n-1\
              vdots & vdots & cdots & vdots \
              omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
              endbmatrix$$



              The triangle inequality for the eigenvalues gives



              $$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$



              with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.



              Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives



              beginalign
              lim_mtoinfty A^m &= beginbmatrix
              1 & 1 & cdots & 1\
              omega_0 & omega_1 & cdots & omega_n-1\
              vdots & vdots & cdots & vdots \
              omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
              endbmatrix^-1
              beginbmatrix
              1 & 0 & cdots & 0 \
              0 & 0 & cdots & 0\
              vdots & vdots & cdots & vdots \
              0 & 0 & cdots & 0\
              endbmatrix
              beginbmatrix
              1 & 1 & cdots & 1\
              omega_0 & omega_1 & cdots & omega_n-1\
              vdots & vdots & cdots & vdots \
              omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
              endbmatrix\
              &= beginbmatrix
              1 & 1 & cdots & 1\
              omega_0 & omega_1 & cdots & omega_n-1\
              vdots & vdots & cdots & vdots \
              omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
              endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
              endalign



              You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.



              The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.






              share|cite|improve this answer
























                up vote
                2
                down vote













                Your matrix $A$ is a circulant matrix:



                $$A = beginbmatrix
                a_0 & a_1 & cdots & a_n-1\
                a_n-1 & a_0 & cdots & a_n-2\
                vdots & vdots & cdots & vdots \
                a_1 & a_2 & cdots & a_0\
                endbmatrix$$



                $A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.



                Therefore we can diagonalize $A$ as follows:



                $$A = P^-1DP = beginbmatrix
                1 & 1 & cdots & 1\
                omega_0 & omega_1 & cdots & omega_n-1\
                vdots & vdots & cdots & vdots \
                omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                endbmatrix^-1
                beginbmatrix
                lambda_0 & 0 & cdots & 0 \
                0 & lambda_1 & cdots & 0\
                vdots & vdots & cdots & vdots \
                0 & 0 & cdots & lambda_n-1\
                endbmatrix
                beginbmatrix
                1 & 1 & cdots & 1\
                omega_0 & omega_1 & cdots & omega_n-1\
                vdots & vdots & cdots & vdots \
                omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                endbmatrix$$



                The triangle inequality for the eigenvalues gives



                $$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$



                with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.



                Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives



                beginalign
                lim_mtoinfty A^m &= beginbmatrix
                1 & 1 & cdots & 1\
                omega_0 & omega_1 & cdots & omega_n-1\
                vdots & vdots & cdots & vdots \
                omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                endbmatrix^-1
                beginbmatrix
                1 & 0 & cdots & 0 \
                0 & 0 & cdots & 0\
                vdots & vdots & cdots & vdots \
                0 & 0 & cdots & 0\
                endbmatrix
                beginbmatrix
                1 & 1 & cdots & 1\
                omega_0 & omega_1 & cdots & omega_n-1\
                vdots & vdots & cdots & vdots \
                omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                endbmatrix\
                &= beginbmatrix
                1 & 1 & cdots & 1\
                omega_0 & omega_1 & cdots & omega_n-1\
                vdots & vdots & cdots & vdots \
                omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
                endalign



                You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.



                The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.






                share|cite|improve this answer






















                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Your matrix $A$ is a circulant matrix:



                  $$A = beginbmatrix
                  a_0 & a_1 & cdots & a_n-1\
                  a_n-1 & a_0 & cdots & a_n-2\
                  vdots & vdots & cdots & vdots \
                  a_1 & a_2 & cdots & a_0\
                  endbmatrix$$



                  $A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.



                  Therefore we can diagonalize $A$ as follows:



                  $$A = P^-1DP = beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix^-1
                  beginbmatrix
                  lambda_0 & 0 & cdots & 0 \
                  0 & lambda_1 & cdots & 0\
                  vdots & vdots & cdots & vdots \
                  0 & 0 & cdots & lambda_n-1\
                  endbmatrix
                  beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix$$



                  The triangle inequality for the eigenvalues gives



                  $$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$



                  with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.



                  Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives



                  beginalign
                  lim_mtoinfty A^m &= beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix^-1
                  beginbmatrix
                  1 & 0 & cdots & 0 \
                  0 & 0 & cdots & 0\
                  vdots & vdots & cdots & vdots \
                  0 & 0 & cdots & 0\
                  endbmatrix
                  beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix\
                  &= beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
                  endalign



                  You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.



                  The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.






                  share|cite|improve this answer












                  Your matrix $A$ is a circulant matrix:



                  $$A = beginbmatrix
                  a_0 & a_1 & cdots & a_n-1\
                  a_n-1 & a_0 & cdots & a_n-2\
                  vdots & vdots & cdots & vdots \
                  a_1 & a_2 & cdots & a_0\
                  endbmatrix$$



                  $A$ is known to have eigenvalues equal to $lambda_j = sum_k=0^n-1 a_komega_j^k$ with eigenvectors $beginbmatrix 1 \ omega_j \ omega_j^2 \ vdots \ omega_j^n-1endbmatrix$, where $omega_j = e^frac2pi ijn$ for $j = 0, ldots n-1$.



                  Therefore we can diagonalize $A$ as follows:



                  $$A = P^-1DP = beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix^-1
                  beginbmatrix
                  lambda_0 & 0 & cdots & 0 \
                  0 & lambda_1 & cdots & 0\
                  vdots & vdots & cdots & vdots \
                  0 & 0 & cdots & lambda_n-1\
                  endbmatrix
                  beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix$$



                  The triangle inequality for the eigenvalues gives



                  $$|lambda_j| = left|sum_k=0^n-1 a_komega_j^kright| le sum_k=0^n-1 a_k |omega_j|^k = sum_k=0^n-1 a_k = 1$$



                  with equality holding if and only if $a_0, a_1omega_j, ldots, a_n-1omega_j^n-1$ lie on the same side of a single line through the origin. Clearly this is true iff $j = 0$ so the eigenvalues satisfy $lambda_0 = 1$ and $|lambda_j| < 1$ for $j = 1, ldots, n-1$.



                  Hence letting $mtoinfty$ in $A^m = P^-1D^mP$ gives



                  beginalign
                  lim_mtoinfty A^m &= beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix^-1
                  beginbmatrix
                  1 & 0 & cdots & 0 \
                  0 & 0 & cdots & 0\
                  vdots & vdots & cdots & vdots \
                  0 & 0 & cdots & 0\
                  endbmatrix
                  beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix\
                  &= beginbmatrix
                  1 & 1 & cdots & 1\
                  omega_0 & omega_1 & cdots & omega_n-1\
                  vdots & vdots & cdots & vdots \
                  omega_0^n-1 & omega_1^n-1 & cdots & omega_n-1^n-1
                  endbmatrix^-1 beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix
                  endalign



                  You can calculate this by hand, or notice that the columns of $lim_mtoinfty A^m$ satisfy the system $Px = beginbmatrix 1 \ 1 \ vdots \ 1endbmatrix$, which you can solve.



                  The sum $sum_k=0^n-1 omega_k^j$ is equal to $0$ here, which would suggest that the limit doesn't have to be of the form you specified.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Sep 6 at 14:21









                  mechanodroid

                  24.6k62245




                  24.6k62245



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907338%2fdoes-this-matrix-sequence-always-converge%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      這個網誌中的熱門文章

                      Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

                      Why am i infinitely getting the same tweet with the Twitter Search API?

                      Carbon dioxide