Complement of a nowhere dense set

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite













Prove:
If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
dense in $X$




This question is already appeared in this site but I'm mention again here is for check my proof.



Here's my try:



$A$ is nowhere dense means $textInt(overlineA)=phi$



In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.



Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$



Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$



So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$



Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$



Is this correct? Any suggestions must be appreciated!










share|cite|improve this question

























    up vote
    1
    down vote

    favorite













    Prove:
    If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
    dense in $X$




    This question is already appeared in this site but I'm mention again here is for check my proof.



    Here's my try:



    $A$ is nowhere dense means $textInt(overlineA)=phi$



    In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.



    Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$



    Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$



    So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$



    Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$



    Is this correct? Any suggestions must be appreciated!










    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite












      Prove:
      If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
      dense in $X$




      This question is already appeared in this site but I'm mention again here is for check my proof.



      Here's my try:



      $A$ is nowhere dense means $textInt(overlineA)=phi$



      In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.



      Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$



      Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$



      So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$



      Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$



      Is this correct? Any suggestions must be appreciated!










      share|cite|improve this question














      Prove:
      If $A$ is nowhere dense subset of a topological space $X$, then $X setminus A$ is
      dense in $X$




      This question is already appeared in this site but I'm mention again here is for check my proof.



      Here's my try:



      $A$ is nowhere dense means $textInt(overlineA)=phi$



      In order to prove $X setminus A$ is dense, we prove every point of $X$ is either a point of $X setminus A$ or a limit point of $X setminus A$.



      Let $x in X$ be arbitrary. If $x in X setminus A$, then we are done. So assume $x notin X setminus A$. That is $x in A$. In this case we prove $x$ is a limit point of $X setminus A$



      Since $A subset overlineA$ implies $x in overlineA$ . Also we know $textIntA subset textInt(overlineA)(=phi,textby hypothesis)$, so $textIntA =phi$



      So we write, $$x in overlineA=overlineA setminus phi =overlineA setminus textIntA=partial(A)=overlineA cap overlineXsetminus A $$



      Hence $x in overlineXsetminus A$ and so $x$ is a limit point of $Xsetminus A$



      Is this correct? Any suggestions must be appreciated!







      general-topology






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 6 at 9:03









      LDM

      541314




      541314




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.






          share|cite|improve this answer




















          • Thanks!..........
            – LDM
            Sep 6 at 13:46










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907254%2fcomplement-of-a-nowhere-dense-set%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.






          share|cite|improve this answer




















          • Thanks!..........
            – LDM
            Sep 6 at 13:46














          up vote
          1
          down vote



          accepted










          Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.






          share|cite|improve this answer




















          • Thanks!..........
            – LDM
            Sep 6 at 13:46












          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.






          share|cite|improve this answer












          Your proof is correct. In fact $X setminus A$ is dense in $X$ if and only if $textInt(A) = emptyset$ because $overlineX setminus A = X setminus textInt(A)$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 6 at 10:17









          Paul Frost

          4,8631425




          4,8631425











          • Thanks!..........
            – LDM
            Sep 6 at 13:46
















          • Thanks!..........
            – LDM
            Sep 6 at 13:46















          Thanks!..........
          – LDM
          Sep 6 at 13:46




          Thanks!..........
          – LDM
          Sep 6 at 13:46

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2907254%2fcomplement-of-a-nowhere-dense-set%23new-answer', 'question_page');

          );

          Post as a guest













































































          這個網誌中的熱門文章

          Is there any way to eliminate the singular point to solve this integral by hand or by approximations?

          Why am i infinitely getting the same tweet with the Twitter Search API?

          Carbon dioxide